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Abstract. This paper describes a weighted finite-state transducer com-
position algorithm that generalizes the concept of the composition fil-

ter and presents various filters that process epsilon transitions, look-
ahead along paths, and push forward labels along epsilon paths. These
filters, either individually or in combination, make it possible to compose
some transducers much more efficiently in time and space than otherwise
possible. We present examples of this drawn, in part, from demanding
speech-processing applications. The generalized composition algorithm
and many of these filters have been included in OpenFst, an open-source
weighted transducer library.

1 Introduction

The composition algorithm plays a central role in the use of weighted finite-state
transducers. It is used, for example, to apply finite-state models to inputs and
to combine cascaded models. The classical version of the composition algorithm,
which simply matches transitions leaving paired input states, is easy to imple-
ment and often effective in practice. However, experience has shown that there
are some transducers of practical importance that do not compose efficiently
in this way. These cases typically create significant numbers of non-coaccessible
composition states that waste time and space. For some problems, it is possible
to find equivalent inputs that will compose more efficiently, but it is not always
possible or desirable to do so. This has been especially an issue in natural lan-
guage processing applications and led to special-purpose composition algorithms
for use in speech recognition [5, 6, 10, 14] and speech synthesis [2].

In this paper we generalize the composition algorithm, subsuming several of
these specializations and others in an efficient way. The idea is to introduce a
composition filter, applied at each composition state during the construction,
that decides if composition is to continue. If we set out to create a general com-
position filter that blocks every non-coaccessible composition state for any input
transducers, then we have only delegated the job of doing a full composition to
the filter. Instead, we take the view that there are certain specific filters, tailored
to particular but common cases, that are efficient to use, involving only a limited
degree of look-ahead along paths. Composition itself is then parameterized to
take one or more of these filters that are selected by the user to fit his problem.



Section 2 presents the generalized composition algorithm and defines several
composition filters. Section 3 provides examples of these composition filters ap-
plied to practical problems. Section 4 briefly describes how these filters are used
in OpenFst [3], an open-source weighted transducer library.

2 Composition Algorithm

2.1 Preliminaries

A semiring (K,⊕,⊗, 0, 1) is ring that may lack negation. If ⊗ is commutative,
we say that the semiring is commutative.

The probability semiring (R+,+,×, 0, 1) is used when the weights represent
probabilities. The log semiring (R∪{∞} ,⊕log,+,∞, 0), isomorphic to the prob-
ability semiring via the negative-log mapping, is often used in practice for nu-
merical stability. The tropical semiring (R ∪ {∞} ,min,+,∞, 0), derived from
the log semiring using the Viterbi approximation, is often used in shortest-path
applications.

A weighted finite-state transducer T = (A,B, Q, I, F,E, λ, ρ) over a semiring
K is specified by a finite input alphabet A, a finite output alphabet B, a finite
set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite
set of transitions E ⊆ E = Q × (A ∪ {ǫ})× (B ∪ {ǫ})× K ×Q, an initial state
weight assignment λ : I → K, and a final state weight assignment ρ : F → K.
E[q] denotes the set of transitions leaving state q ∈ Q.

Given a transition e ∈ E, p[e] denotes its origin or previous state, n[e] its
destination or next state, i[e] its input label, o[e] its output label, and w[e] its
weight. A path π = e1 · · · ek is a sequence of consecutive transitions: n[ei−1] =
p[ei], i = 2, . . . , k. The functions n, p, and w on transitions can be extended
to paths by setting: n[π] = n[ek] and p[π] = p[e1] and by defining the weight
of a path as the ⊗-product of the weights of its constituent transitions: w[π] =
w[e1]⊗ · · · ⊗ w[ek]. A string is a sequence of labels; ǫ denotes the empty string.

The weight associated by T to any pair of input-output strings (x, y) is given
by:

T (x, y) =
⊕

π∈∪q∈I, q′∈FP (q,x,y,q′)

λ[p[π]]⊗ w[π]⊗ ρ[n[π]], (1)

where P (q, x, y, q′) denotes the set of paths from q to q′ with input label x ∈ A∗

and output label y ∈ B∗.
We denote by |T |Q the number of states, |T |E the number of transitions, and

d(T ) the maximum out-degree in T . The size of T is then |T | = |T |Q + |T |E .

2.2 Composition

Let K be a commutative semiring and let T1 and T2 be two weighted trans-
ducers defined over K such that the input alphabet B of T2 coincides with the
output alphabet of T1. The result of the composition of T1 and T2 is a weighted
transducer denoted by T1 ◦ T2 and specified for all x, y by:

(T1 ◦ T2)(x, y) =
⊕

z∈B∗

T1(x, z)⊗ T2(z, y). (2)



Leaving aside transitions with ǫ inputs or outputs, the following rule specifies
how to compute a transition of T1 ◦T2 from appropriate transitions of T1 and T2:
(q1, a, b, w1, q

′
1) and (q2, b, c, w2, q

′
2) results in ((q1, q2), a, c, w1 ⊗ w2, (q

′
1, q
′
2)). A

simple algorithm to compute the composition of two ǫ-free transducers, following
the above rule, is given in [13].

More care is needed when T1 has output ǫ labels or T2 input ǫ labels. An
output ǫ label in T1 may be matched with an input ǫ label in T2, following the
above rule with ǫ labels treated as regular symbols. However, an output ǫ label
may also be read in T1 without matching any actual transition in T2. This case
can be handled by the above rule after adding self-loops at every state of T2

labeled on the inner tape by a new symbol ǫL and on the outer tape by ǫ and
allowing transitions labeled by ǫ and ǫL to match. Similar self-loops are added
to T1 for matching input ǫ labels on T2. However, this approach can result in
redundant ǫ-paths since an epsilon label can match in the two above ways. The
redundant paths must be filtered out because they will produce incorrect results
in non-idempotent semirings (like the log semiring).1 We introduced the ǫL label
to distinguish these two types of match in the filtering.

In [13], a filter transducer is introduced that is used with relabeling and the
ǫ-free composition algorithm to correctly implement composition with ǫ labels.
Our composition algorithm extends this by generalizing the composition filter.

Our algorithm takes as input two weighted transducers T1 =
(A,B, Q1, I1, F1, E1, λ1, ρ1) and T2 = (B, C, Q2, I2, F2, E2, λ2, ρ2) over a semir-
ing K and a composition filter Φ = (T1, T2, Q3, i3,⊥, ϕ, ρ3), which has a set
of filter states Q3, a designated initial filter state i3, a designated blocking fil-
ter state ⊥, a transition filter ϕ : EL

1 × EL
2 × Q3 → E1 × E2 × Q3 where

EL
n =

⋃

q∈Qn
EL[q], EL[q1] = E[q1] ∪

{

(q1, ǫ, ǫ
L, 1, q1)

}

for each q1 ∈ Q1,

EL[q2] = E[q2] ∪
{

(q2, ǫ
L, ǫ, 1, q2)

}

for each q2 ∈ Q2 and a final weight filter
ρ3 : Q3 → K.

We shall see that the filter can be used in composition to block the expansion
of some states (by entering the ⊥ state) and modify the transitions and final
weights (useful for optimizations).

The states in the output of composition are identified with triples of a state
from each of the two input transducers and one from the filter. In particular, the
algorithm outputs a weighted finite-state transducer T = (A, C, Q, I, F,E, λ, ρ)
implementing the composition of T1 and T2 where Q ⊆ Q1 × Q2 × Q3 and
I = I1 × I2 × {i3}.

Figure 1 gives the pseudocode of this algorithm. E and F are all initialized
to the empty set and grown as needed. The algorithm uses a queue S containing
the set of state triples of states yet to be examined. The queue discipline of S
is arbitrary and does not affect the termination of the algorithm. The state set
Q is initially the set of triples of initial states of the original transducers and
filter, as is I and S, and the corresponding initial weights are computed (lines

1 Redundant ǫ-paths are also an issue in the unweighted case when testing for the
ambiguity of finite automata [1].



Weighted-Composition(T1, T2, Φ)

1 Q← I ← S ← I1 × I2 × {i3}
2 for each (q1, q2, i3) ∈ I do
3 λ(q1, q2, i3)← λ1(q1)⊗ λ2(q2)
4 while S 6= ∅ do
5 (q1, q2, q3)← Head(S)
6 Dequeue(S)
7 if (q1, q2, q3) ∈ F1 × F2 ×Q3 and ρ3(q3) 6= 0 then
8 F ← F ∪ {(q1, q2, q3)}
9 ρ(q1, q2, q3)← ρ1(q1)⊗ ρ2(q2)⊗ ρ3(q3)

10 M ← {(e1, e2) ∈ EL[q1]× EL[q2] s.t. ϕ(e1, e2, q3) = (e′
1
, e′

2
, q′

3
) with q′

3
6=⊥}

11 for each (e1, e2) ∈M do
12 (e′

1
, e′

2
, q′

3
)← ϕ(e1, e2, q3)

13 if (n[e′
1
], n[e′

2
], q′

3
) 6∈ Q then

14 Q← Q ∪
{

(n[e′
1
], n[e′

2
], q′

3
)
}

15 Enqueue(S, (n[e′
1
], n[e′

2
], q′

3
))

16 E ← E ∪ {((q1, q2, q3), i[e
′

1
], o[e′

2
], w[e′

1
]⊗ w[e′

2
], (n[e′

1
], n[e′

2
], q′

3
))}

17 return T

Fig. 1. Pseudocode of the composition algorithm.

1-3). Each time through the loop in lines 3-14, a new triple of states (q1, q2, q3)
is extracted from S (lines 5-6). The final weight of (q1, q2, q3) is computed by
⊗-multiplying the final weights of q1 and q2 and the final filter weight when they
are all final states (lines 8-9). Then, for each pair of transitions, the transition
filter is first applied. If the new filter state is not the blocking state ⊥ and a new
transition is created from the filter-rewritten transitions (e′1, e

′
2) (line 16). If the

destination state (n[e′1], n[e
′
2], q

′
3) has not been found previously, it is added to

Q and inserted in S (lines 13-15). The composition algorithm presented here is
available in the OpenFst library [3].

2.3 Elementary Composition Filters

In this section, we consider elementary filters for composition without and with
epsilon transitions.

Trivial Filter Filter Φtrivial blocks no paths and leaves transitions and fi-
nal weights unmodified. For Φtrivial, let Q3 = {0,⊥}, i3 = 0, ϕ(e1, e2, q3) =
(e1, e2, q

′
3) with q′3 = 0 if o[e1] = i[e2] ∈ B and ⊥ otherwise, and ρ(q3) = 1

for all q3 ∈ Q3. With this filter, the pseudocode in Figure 1 matches the simple
epsilon-free composition algorithm given in [13].

Let us assume that the transitions at each state in T2 are sorted according to
their input label. The set M of transitions to be computed line 8 is simply equal
to {(e1, e2) ∈ E[q1]× E[q2] : o[e1] = i[e2]}. It can be computed by performing a
binary search over E[q2] for each transition in E[q1]. The time complexity of
computing M is then O(|E[q1]| log |E[q2]|+ |M |). Since each element in M will
result in a transition in T , the worst-case time complexity of the algorithm is
O(|T |Qd(T1) log d(T2) + |T |E). The space complexity of the algorithm is O(|T |).



Epsilon-Matching Filter Filter Φǫ-match handles epsilon labels, but disallows
redundant epsilon paths, preferring those that match actual ǫ labels. It leaves
transitions and final weights unmodified.

For Φǫ-match, let Q3 = {0, 1, 2,⊥}, i3 = 0, ρ(q3) = 1 for all q3 ∈ Q3, and
ϕ(e1, e2, q3) = (e1, e2, q

′
3) where:

q′3 =























0 if (o[e1], i[e2]) = (x, x) with x ∈ B,
0 if (o[e1], i[e2]) = (ǫ, ǫ) and q3 = 0,
1 if (o[e1], i[e2]) = (ǫL, ǫ) and q3 6= 2,
2 if (o[e1], i[e2]) = (ǫ, ǫL) and q3 6= 1,
⊥ otherwise.

With this filter, the pseudocode in Figure 1 matches the composition algorithm
given in [13] with the specified composition filter transducer. The complexity of
the algorithm is the same as when using the trivial filter.

Epsilon-Sequencing Filter Alternatively, filter Φǫ-seq can also be used to
remove redundant epsilon paths. This filter favors epsilon paths consisting of
(output) ǫ-transitions in T1 (matched with staying at the same state in T2)
followed by (input) ǫ-transitions in T2 (matched with staying at the same state
in T1).

For Φǫ-seq, let Q3 = {0, 1,⊥}, i3 = 0, ρ(q3) = 1 for all q3 ∈ Q3, and
ϕ(e1, e2, q3) = (e1, e2, q

′
3) where:

q′3 =















0 if (o[e1], i[e2]) = (x, x) with x ∈ B,
0 if (o[e1], i[e2]) = (ǫ, ǫL) and q3 = 0,
1 if (o[e1], i[e2]) = (ǫL, ǫ),
⊥ otherwise.

(3)

The complexity of the algorithm is the same as when using the trivial filter.
Replacing the pair (o[e1], i[e2]) by (i[e2], o[e1]) in (3) leads to the symmetric filter
Φǫ-seq. Whether it is better to choose the epsilon-matching or epsilon-sequencing
filter is problem-dependent as shown in Section 3.

2.4 Look-Ahead Composition Filters

In this section, we introduce filters that can result in more efficient composition
by looking-ahead along paths and blocking unsuccessful matches under various
scenarios.

String-Potential Filter Filter Φsp looks-ahead along common prefixes of state
futures. Given two strings u and v, we denote by u∧v the longest common prefix
of u and v. Given a state q in a tranducer T , the input (resp. output) string
potential of q, denoted by pi(q) (resp. po(q)), is the longest common prefix of
the input (resp. output) labels of all the paths from q to a final state.



For Φsp, let Q3 = {0,⊥}, i3 = 0, ρ(0) = 1, and ϕ(e1, e2, q3) = (e1, e2, q
′
3)

where:

q′3 =

{

0 if po(n[e1]) ∧ pi(n[e2]) ∈ {po(n[e1]), pi(n[e2])},
⊥ otherwise.

This filter prevents the creation of some non-coaccessible states since a state
(q1, q2) in T1 ◦ T2 is coaccessible only if po(q1) is a prefix of pi(q2) or pi(q2) is a
prefix of po(q1) [2]. Computing string potentials can be done using the generic
single-source shortest-distance algorithm of [12] over the string semiring. This
can be done on-demand or as a pre-processing step. Naively storing a string
at each state results in a complexity (on-demand) of O(|T |Qd(T1) log d(T2) +
|T |E min(µ1, µ2)) in time and O(|T |+ |T1|Qµ1+ |T2|Qµ2) in space, with µi being
the length of the longest potential in Ti. This can be improved using better data
structures (such as tries or suffix trees).

Transition-Look-Ahead Filter When states paired in composition have no
shared common prefixes, it is is necessary to examine the specific transitions
themselves in any look-ahead. A simple form of look-ahead is then to try to
match one set of transitions into the future.

Given a state q in a transducer T let us denote by Li(q) and Lo(q) the set of
input and output labels of outgoing transitions in q. For Φtr-la, let Q3 = {0,⊥},
i3 = 0, ρ(0) = 1, and ϕ(e1, e2, q3) = (e1, e2, q

′
3) where:

q′3 =

{

0 if Lo(n[e1]) ∩ Li(n[e2]) 6= ∅ or ǫ ∈ Lo(n[e1]) ∪ Li(n[e2]),
⊥ otherwise.

The sets Li(q) and Lo(q) can be computed on-demand or as a pre-processing step
and can be represented using data-structures providing efficient intersection such
as bit vectors or Bloom filters. Using bit vectors, the complexity (on-demand) is
O(|T |Qd(T1) log d(T2) + |T |E log |B|) in time and O(|T |+(|T1|Q + |T2|Q) log |B|)
in space.

Label-Reachability Filter In transducers with epsilon transitions, looking-
ahead a single transition is not sufficient, since we can not match a (non-epsilon)
label without traversing epsilon paths. Filter Φreach precomputes those traverals.

When composing states q1 in T1 and q2 in T2, filter Φreach disallows following
an epsilon-labeled path from q1 that will fail to reach a non-epsilon label that
matches some transition leaving state q2. It leaves transitions and final weights
unmodified. For simplicity, we assume there are no input ǫ labels in T1.

For Φreach, let Q3 = {0,⊥}, i3 = 0, and ρ(q3) = 1 for all q3 ∈ Q3. Define
r : B ×Q1 → {0, 1} such that r(x, q) = 1 if there is a path π from q to some q′

in T1 with o[π] = x, otherwise let r(x, q) = 0. Let ϕ(e1, e2, q3) = (e1, e2, 0) if (i)
o[e1] = i[e2] or if (ii) o[e1] = ǫ, i[e2] = ǫL, and for some e′2 ∈ E[p[e2]], i[e

′
2] 6= ǫ

and r(i[e′2], n[e1]) = 1. Otherwise let ϕ(e1, e2, q3) = (e1, e2,⊥).
Let us denote by cr(T1) the cost of performing one reachability query in

T1 using r, by Sr(T1) the total space required for r, and by dǫT1 the maximal



number of output-ǫ transitions at a state in T1. The worst-case time complexity
of the algorithm is: O(|T |Q(d(T1) log d(T2)+dǫ(T1)cr(T1))+ |T |E), and the space
complexity is O(|T |+ Sr(T1)).

There are different ways we can represent r and they will lead to different
complexities for composition. We will assume for our analysis, whatever its rep-
resentation, that r is precomputed and stored with T1. In general, we exclude
any T -specific precomputation from composition’s time complexity.

Point Representation of r: Define Rq = {x ∈ B : r(x, q) = 1} for each
state q ∈ T1. If the labels in Rq are stored in a linked list, traversed linearly
and each matched against sorted input labels in T2 using binary search, then
cr(T1) = maxq |Rq| log d(T2) and Sr(T1) =

∑

q |Rq|.

Interval Representation of r: We can use intervals to represent Rq if B =
[1, |B|] ⊂ N by defining Iq = {[x, y) : x, y ∈ N, [x, y) ⊆ Rq, x−1 /∈ Rq, y /∈ Rq}. If
the intervals in Iq are stored in a linked list, traversed linearly and each matched
against sorted input labels in T2 using (lower-bound) binary search, then cr(T1)
= maxq |Iq | log d(T2) and Sr(T1) =

∑

q |Iq|.

Assuming the particular numbering of the labels is arbitrary, let permutation
Π : B → B be a bijection that is used to relabel both T1 and T2 prior to
composition. Among the |B|! different possible such permutations, some could
result in far fewer intervals in Iq than others. In fact, there may exist a Π that
results in one interval per Iq. Consider the |B| × |Q1| matrix R with R[i, j] =
r(i, j). The condition that the Iq each contain a single interval is equivalent to
the property that the ones in the columns of R are consecutive. A binary matrix
R that has a permutation of rows that results in columns with consecutive
ones is said to have the Consecutive One’s Property (C1P). The problem has
been extensively studied and has many applications [4, 8, 9, 11]. There are linear
algorithms to find a permutation if it exists; the first, due to Booth and Lucker,
was based on PQ-trees [4]. There are approximate algorithms when an exact
solution does not exist [7]. Our speech application that follows admits C1P. As
such, the interval representation of r results in a significant complexity reduction
over the point representation.

Label-Reachability Filter with Label Pushing A modification of the label-
reachability filter for the case of a single transition matching leads to smaller and
more efficient compositions as we will show in Section 3.

When matching an ǫ-transition e1 in q1 with an ǫL-loop in q2, the Φreach

filter allows this match if and only the set of transitions in q2 that match the
future in n[e1] is non-empty. In the special case where this set contains a unique
transition e′2, the Φpush-label filter allows e1 to match e′2, resulting in the early
output of o[e′2].

For Φpush-label, let Q3 = {ǫ,⊥} ∪ B, i3 = ǫ and ρ(q3) = 1 if q3 = ǫ and
ρ(q3) = 0 otherwise. Let ϕ(e1, e2, q3) = (e1, e2, ǫ) if q3 = ǫ and o[e1] = i[e2], or
if q3 = o[e1] = ǫ, i[e2] = ǫL and | {e ∈ E[q2] : r(n[e1], i[e]) = 1} | ≥ 2, or if q3 =
o[e1] 6= ǫ and i[e2] = ǫL. Let ϕ(e1, e2, q3) = (e1, e2, q3) if q3 6= ǫ, o[e1] = ǫ, i[e2] =
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Fig. 2. Example transducers: (a) deleting transducer D, (b) n-gram language model G
transition, (c) pronunciation lexicon L path, and (d) context-dependency transducer
C transition.

ǫL and r(n[e1], q3) = 1. Let ϕ(e1, e2, ǫ) = (e1, e
′
2, i[e

′
2]) if o[e1] = ǫ, i[e2] = ǫL and

{e ∈ E[q2] : r(n[e1], i[e]) = 1} = {e′2}. Otherwise, let ϕ(e1, e2, q3) = (e1, e2,⊥).
The complexity of the algorithm is the same as when using the label-

reachability filter.

2.5 Combining filters

In Section 2.3 we presented composition filters for correctly handling epsilon
transitions and in Section 2.4 we presented look-ahead filters that can lead to
more efficient composition. In practice, we may need a combination of these
filters, for example, to match with epsilon transitions and look-ahead along paths
in a particular way. We present here how to synthesize a new composition filter
from two components filters.

Let Φa = (Qa
3 , i

a
3,⊥

a, ϕa, ρa3) and Φb = (Qb
3, i

b
3,⊥

b, ϕb, ρb3) be two composition
filters, we will define their combination as the filter Φa ⋄ Φb = (Q3, i3,⊥, ϕ, ρ3)
with Q3 = Qa

3 × Qb
3, i3 = (ia3 , i

b
3), ⊥= (⊥a,⊥b), ρ3((q

a
3 , q

b
3)) = ρa3(q

a
3 ) ⊗ ρb3(q

b
3),

and with ϕ defined as follows: given (e1, e2, q3) ∈ E1×E2×Q3 with q3 = (qa3 , q
b
3),

ϕb(e1, e2, q
b
3) = (e′1, e

′
2, r

b
3) and ϕa(e′1, e

′
2, q

a
3 ) = (e′′1 , e

′′
2 , r

a
3 ), then let

ϕ(e1, e2, q3) = (e′′1 , e
′′
2 , q
′
3) with q′3 =

{

⊥ if ra3 =⊥a or rb3 =⊥b,
(ra3 , r

b
3) otherwise.

The filter Φreach ⋄ Φǫ-seq can for instance be used to benefit from the label-
reachable filter when T2 contains input ǫ-transitions.

3 Examples

In this section, examples are given of the previously-defined composition filters.
All examples are benchmarked using the composition algorithm in OpenFst [3].

Let Σ = {1, . . . , 5000} and let D be the two-state transducer over Σ × Σ
that transduces each input symbol to ǫ as depicted in Figure 2(a). Consider the
composition D ◦D−1 using the epsilon-matching and epsilon-sequencing filters.
The former creates a two-state machine with a transition for every element of
Σ × Σ while the latter is identical to the concatenation TT−1. Table 1(a)-(b)
compares the number of composition states, transitions, time and memory usage
with these two filters. In this example, the epsilon-sequencing filter gives a much



smaller and efficiently-generated result than the epsilon-matching filter. It is easy
to find examples where the opposite is true.

For the look-ahead filters, we draw our examples from a standard large-
vocabulary speech recognition task - DARPA Broadcast News (BN). There are
three alphabets for this task: Ω, the set of BN English words used where |Ω| =
70,897; Π , the set of English phonemes where |Π | = 46; and Υ , a set of English
tri-phonemic acoustic models where |Υ | = 20,910. There are three component
transducers for this task:

– a 4-gram language model G, which is a weighted automaton over Ω and has
2,213,539 states and 10,225,015 transitions. The weights model the prob-
ability of a particular sentence being uttered as estimated from the BN
corpus. Figure 2(b) depicts the 4-gram transition abcd in G with probablity
Pr(d|abc).

– a minimal deterministic lexicon transducer L over Ω×Π , which maps phone-
mic pronunications to their word symbols and has 63,283 states and 145,710
transitions. The pronunciations are from a pronunciation dictionary. Fig-
ure 2(c) depicts a path in L.

– a minimal deterministic tri-phonemic context-dependency transducer C over
Υ×Π , which maps from tri-phonemic model sequences to their corresponding
phonemic sequence and has 1454 states and 88,840 transitions. The acoustic
models are produced in the acoustic training phase of speech recognition
and model a phoneme in its left and right context (possibly clustered due to
data sparsity). Figure 2(d) depicts the transition in C for the triphonemic
xyz model, m(xyz).

For precise details about their form and construction of these three transduc-
ers, see [13]. We have chosen these transducers since the composition C ◦L ◦G,
mapping from tri-phonemic models to word sequences weighted by their proba-
bilities, is the recognition transducer matched against acoustic input during the
recognition of an utterance. However, both C and L present significant issues
for classical composition as detailed below. By constructing C and L differently,
it is possible to use classical composition more efficiently, however these con-
structions introduce considerable non-determinism in the result that requires an
expensive determinization to remove, something that we often wish to avoid.

While these examples are drawn from speech recognition, other application
areas (e.g. text-to-speech synthesis, optical character recognition, spelling cor-
rection) involve similar language models, dictionaries and/or context-dependent
constraints that can be modeled usefully with transducers and present similar
issues with composition.

In the examples below that involve ǫ-transitions, we in fact use look-ahead
filters combined with the epsilon-sequencing filter as described in Section 2.5.

String-Potential Filter: As depicted in Figure 2(d), a single symbol (the right
tri-phoneme) is the output label for each transition leaving a state in the C
transducer. That symbol is also the string potential at each state. In composition,
we can take advantage of this as demonstrated by Table 1(c)-(d), which compares
C composed with a random string α ∈ Π1000000 using the trivial versus the



Table 1. Number of composition states and transitions (before trimming), time and
memory usage for various composition filters. Observe that (a), (c), (e) and (g) corre-
spond to using the composition algorithm from [13]. Experiments were conducted on
a quad-core 2.2 GHz AMD Opteron machine with 32 GB of RAM.

composition filter T1 T2

T1 ◦T2 T1 ◦T2 time mem.
states transitions (sec) (mbytes)

(a) epsilon-matching D D−1 2 25,000,000 4.21 1419.5

(b) epsilon-sequencing D D−1 3 10,000 0.73 22.0
(c) trivial C α 47,021,923 47,021,922 48.45 4704.0
(d) string-potential C α 1,043,734 1,043,733 8.97 351.0
(e) trivial C L 1,952,555 3,527,612 2.77 225.0
(f) transition-look-ahead C L 120,489 149,972 0.84 33.4
(g) epsilon-sequencing L G ? ? > 7200.00 > 32,768.0
(h) label-reachability L G 30,884,222 39,965,633 177.93 3612.9
(i) lab.-reach. w/ label-pushing L G 13,377,323 22,151,870 113.72 1885.9

string-potential filters. The trivial filter is inefficient due to the output non-
determinism, while the string-potential filter is much better in both time and
space. Another effective use of string potentials in composition is given in [2].

Transition-Look-Ahead Filter: Unlike the previous example, the composition
C ◦L will not benefit much from using the string-potential filter since the string
potential at most states in L is ǫ. In this case, the transition-look-ahead filter can
be applied. Table 1(e)-(f), which compares the trivial and transition-look-ahead
filters, demonstrates that the transition-look-ahead filter creates fewer states in
the (untrimmed) result, saving time and space.

Label-Reachability Filter: The composition L◦G using the epsilon-sequencing
(or -matching) composition filter is very inefficient since the initial epsilon paths
in L create many non-coaccessible states in the result. For this problem, the label-
reachability filter is appropriate. Table 1(g)-(h) compares the epsilon-sequencing
and label-reachability filters. With the epsilon-sequencing filter, composition ter-
minates after 2 hours with RAM exhausted, while with the label-reachability
filter, only a few minutes are needed for completion.

Label-Reachability Filter with Label Pushing: While the label-reachability fil-
ter addresses the non-coaccessible states in the composition L ◦G (in fact, the
result is trim), it can further benefit from including label-pushing in the filter.
Table 1(i) shows that if we do so, the result is smaller, builds faster and uses
less memory. This benefit is due, in part, to all transitions entering a state in G
having the same label.

4 Implementation

In OpenFst [3], the default composition filter is the epsilon-sequencing filter. It
can be easily and very efficiently changed via templated options. For example,
to use the epsilon-matching filter, one invokes:

ComposeFstOptions<StdArc, MatchComposeFilter> opts;

ComposeFst<StdArc> result(t1, t2, opts);



All filters described here are available in OpenFst. Further, users can add new
ones by creating a class that meets the composition filter interface to handle
their specific applications.

Acknowledgements We thank Mehryar Mohri for suggesting using a general-
ized composition filter for solving problems such as those addressed here.
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