OpenFst: An Open-Source, Weighted Finite-State Transducer Library and its Applications to Speech and Language

Part I. Theory and Algorithms

Overview

1. Preliminaries

- Semirings
- Weighted Automata and Transducers

2. Algorithms

- Rational Operations
- Elementary Unary Operations
- Fundamental Binary Operations
- Optimization Algorithms
- Search Operations
- Fundamental String Algorithms

Weight Sets: Semirings

A semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1}) = \text{a ring that may lack negation.}$

- Sum: to compute the weight of a sequence (sum of the weights of the paths labeled with that sequence).
- Product: to compute the weight of a path (product of the weights of constituent transitions).

SEMIRING	Set	\oplus	\otimes	$\overline{0}$	1
Boolean	{0,1}	V	\wedge	0	1
Probability	\mathbb{R}_+	+	×	0	1
Log	$\mathbb{R} \cup \{-\infty, +\infty\}$	\oplus_{\log}	+	$+\infty$	0
Tropical	$\mathbb{R} \cup \{-\infty, +\infty\}$	min	+	$+\infty$	0
String	$\Sigma^* \cup \{\infty\}$	\wedge	•	∞	ϵ

 \bigoplus_{\log} is defined by: $x \bigoplus_{\log} y = -\log(e^{-x} + e^{-y})$ and \wedge is longest common prefix. The string semiring is a *left semiring*.

Weighted Automaton/Acceptor

Probability semiring $(\mathbb{R}_+, +, \times, 0, 1)$	Tropical semiring $(\mathbb{R}_+ \cup \{\infty\}, \min, +, \infty, 0)$
$[\![A]\!](ab) = 14$	$[\![A]\!](ab) = 4$
$(1 \times 1 \times 2 + 2 \times 3 \times 2 = 14)$	$(\min(1+1+2,3+2+2)=4)$

Weighted Transducer

Probability semiring $(\mathbb{R}_+, +, \times, 0, 1)$	Tropical semiring $(\mathbb{R}_+ \cup \{\infty\}, \min, +, \infty, 0)$
[T](ab,r) = 16	[T](ab,r) = 5
$(1 \times 2 \times 2 + 3 \times 2 \times 2 = 16)$	$(\min(1+2+2,3+2+2)=5)$

Transducers as Weighted Automata

A transducer T is functional iff for each x there exists at most one y such that $[T](x,y) \neq \overline{0}$

- An unweighted functional transducer can be seen as as:
 - \rightarrow a weighted automata over the string semiring $(\Sigma^* \cup \{\infty\}, \wedge, \cdot, \infty, \epsilon)$
- A weighted functional transducer over the semiring \mathbb{K} can be seen as:
 - \rightarrow a weighted automata over the cartesian product of the string semiring and $\mathbb K$

$$[T](ab, r) = 5$$

$$[A](ab) = (r, 5)$$
[Tropical semiring $(\mathbb{R}_+ \cup \{\infty\}, \min, +, \infty, 0)$]

Definitions and Notation - Paths

• Path π

- Origin or previous state: $p[\pi]$.
- Destination or next state: $n[\pi]$.
- Input label: $i[\pi]$.
- Output label: $o[\pi]$.

Sets of paths

- $-P(R_1,R_2)$: set of all paths from $R_1 \subseteq Q$ to $R_2 \subseteq Q$.
- $P(R_1, x, R_2)$: paths in $P(R_1, R_2)$ with input label x.
- $P(R_1, x, y, R_2)$: paths in $P(R_1, x, R_2)$ with output label y.

Definitions and Notation – Automata and Transducers

1. General Definitions

- Alphabets: input Σ , output Δ .
- States: Q, initial states I, final states F.
- Transitions: $E \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Delta \cup \{\epsilon\}) \times \mathbb{K} \times Q$.
- Weight functions: initial weight function $\lambda: I \to \mathbb{K}$ final weight function $\rho: F \to \mathbb{K}$.

2. Machines

• Automaton $A = (\Sigma, Q, I, F, E, \lambda, \rho)$ with for all $x \in \Sigma^*$:

$$[A](x) = \bigoplus_{\pi \in P(I,x,F)} \lambda(p[\pi]) \otimes w[\pi] \otimes \rho(n[\pi])$$

• Transducer $T = (\Sigma, \Delta, Q, I, F, E, \lambda, \rho)$ with for all $x \in \Sigma^*, y \in \Delta^*$:

$$\llbracket T \rrbracket(x,y) = \bigoplus_{\pi \in P(I,x,y,F)} \lambda(p[\pi]) \otimes w[\pi] \otimes \rho(n[\pi])$$

Rational Operations – Algorithms

Definitions

OPERATION	Definition and Notation
Sum	$[\![T_1 \oplus T_2]\!](x,y) = [\![T_1]\!](x,y) \oplus [\![T_2]\!](x,y)$
Product	$[T_1 \otimes T_2](x,y) = \bigoplus [T_1](x_1,y_1) \otimes [T_2](x_2,y_2)$
Closure	$[T^*](x,y) = \bigoplus_{n=0}^{\infty} [T^n](x,y)$

- Conditions on the closure operation: condition on T: e.g. weight of ϵ -cycles $= \overline{0}$ (regulated transducers), or semiring condition: e.g. $\overline{1} \oplus x = \overline{1}$ as with the tropical semiring (locally closed semirings).
- Complexity and implementation
 - Complexity (linear): $O((|E_1| + |Q_1|) + (|E_2| + |Q_2|))$ or O(|Q| + |E|).
 - Lazy implementation.

Sum (Union) - Illustration

- Definition: $[T_1 \oplus T_2](x,y) = [T_1](x,y) \oplus [T_2](x,y)$
- Example:

Product (Concatenation) - Illustration

• Definition:
$$[T_1 \otimes T_2](x,y) = \bigoplus_{x=x_1x_2,y=y_1y_2} [T_1](x_1,y_1) \otimes [T_2](x_2,y_2)$$

• Example:

Closure - Illustration

• Definition:
$$[T^*](x,y) = \bigoplus_{n=0}^{\infty} [T^n](x,y)$$

• Example:

Some Elementary Unary Operations – Algorithms

Definitions

OPERATION	Definition and Notation	LAZY IMPLEMENTATION
Reversal	$[\![\widetilde{T}]\!](x,y) = [\![T]\!](\widetilde{x},\widetilde{y})$	No
Inversion	$[T^{-1}](x,y) = [T](y,x)$	Yes
Projection	$[\![\Pi_1(T)]\!](x) = \bigoplus_y [\![T]\!](x,y)$	Yes
	$\llbracket\Pi_2(T)\rrbracket(x) = \bigoplus_y \llbracketT\rrbracket(y,x)$	

Complexity and implementation

- Complexity (linear): O(|Q| + |E|).
- Lazy implementation (see table).

Reversal – Illustration

- $\bullet \ \ \mathsf{Definition:} \ \ [\![\widetilde{T}]\!](x,y) = [\![T]\!](\widetilde{x},\widetilde{y})$
- Example:

Inversion – Illustration

- Definition: $[T^{-1}](x,y) = [T](y,x)$
- Example:

Projection – Illustration

- Definition: $\llbracket \Pi_1(T) \rrbracket(x) = \bigoplus_y \llbracket T \rrbracket(x,y)$
- Example:

Some Fundamental Binary Operations – Algorithms

Definitions

OPERATION	Definition and Notation	Condition
Composition	$[T_1 \circ T_2](x,y) = \bigoplus_z [T_1](x,z) \otimes [T_2](z,y)$	\mathbb{K} commutative
Intersection	$[A_1 \cap A_2](x) = [A_1](x) \otimes [A_2](x)$	\mathbb{K} commutative
Difference	$[A_1 - A_2](x) = [A_1 \cap \overline{A_2}](x)$	A_2 unweighted &
		deterministic

Complexity and implementation

- Complexity (quadratic): $O((|E_1| + |Q_1|)(|E_2| + |Q_2|))$.
- Path multiplicity in presence of ϵ -transitions: ϵ -filter.
- Lazy implementation.

Composition – Illustration

• Definition: $[T_1 \circ T_2](x,y) = \bigoplus_z [T_1](x,z) \otimes [T_2](z,y)$

• Example:

Composition – Pseudocode

```
Composition(T_1, T_2)
  1 S \leftarrow Q \leftarrow I_1 \times I_2
       while S \neq \emptyset do
  3
                 (q_1, q_2) \leftarrow \text{HEAD}(S)
                 Dequeue(S)
  4
                 if (q_1, q_2) \in I_1 \times I_2 then
  5
                          I \leftarrow I_1 \times I_2
  6
                           \lambda(q_1,q_2) \leftarrow \lambda_1(q_1) \otimes \lambda_2(q_2)
   7
                 if (q_1, q_2) \in F_1 \times F_2 then
  8
  9
                          F \leftarrow F \cup \{(q_1, q_2)\}
                           \rho(q_1,q_2) \leftarrow \rho_1(q_1) \otimes \rho_2(q_2)
 10
                 for each(e_1, e_2) such that o[e_1] = i[e_2] do
 11
                          if (n[e_1], n[e_2]) \not\in Q then
 12
                                    Q \leftarrow Q \cup \{(n[e_1], n[e_2])\}
 13
                                    ENQUEUE(S, (n[e_1], n[e_2]))
 14
                           E \leftarrow E \cup \{((q_1, q_2), i[e_1], o[e_2], w[e_1] \otimes w[e_2], (n[e_1], n[e_2]))\}
 15
 16
        return T = (\Sigma, \Delta, Q, I, F, E, \lambda, \rho)
```

Multiplicity & ϵ -Transitions – Problem

Solution – Filter F for Composition

Filter F

 \rightarrow Replace $T_1 \circ T_2$ by $\hat{T}_1 \circ F \circ \hat{T}_2$.

Intersection – Illustration

- Definition: $[A_1 \cap A_2](x) = [A_1](x) \otimes [A_2](x)$
- Example:

Difference - Illustration

- Definition: $[A_1 A_2](x) = [A_1 \cap \overline{A_2}](x)$
- Example:

Optimization Algorithms – Overview

Definitions

OPERATION	DESCRIPTION
Connection	Removes non-accessible/non-coaccessible states
ϵ -Removal	Removes ϵ -transitions
Determinization	Creates equivalent deterministic machine
Pushing	Creates equivalent pushed/stochastic machine
Minimization	Creates equivalent minimal deterministic machine

• Conditions: There are specific semiring conditions for the use of these algorithms. Not all weighted automata or transducers can be determinized using that algorithm.

Connection – Algorithm

Definition

- Input: weighted transducer T_1 .
- Output: weighted transducer $T_2 \equiv T_1$ with all states connected.

Description

- 1. Depth-first search of T_1 from I_1 .
- 2. Mark accessible and coaccessible states.
- 3. Keep marked states and corresponding transitions.

Complexity and implementation

- Complexity (linear): $O(|Q_1| + |E_1|)$.
- No natural lazy implementation.

Connection – Illustration

• Definition: Removes non-accessible/non-coaccessible states

• Example:

ϵ -Removal – Algorithm

- Definition
 - Input: weighted transducer T_1 with ϵ -transitions.
 - Output: weighted transducer $T_2 \equiv T_1$ with no ϵ -transition.
- Description (two stages):
 - 1. Computation of ϵ -closures: for any state p, states q that can be reached from p via ϵ -paths and the total weight of the ϵ -paths from p to q.

$$C[p] = \{(q, w) : q \in \epsilon[p], d[p, q] = w \neq \overline{0}\}$$

with:

$$d[p,q] = \bigoplus_{\pi \in P(p,\epsilon,q)} w[\pi]$$

- 2. Removal of ϵ 's: actual removal of ϵ -transitions and addition of new transitions.
 - \implies All-pair K-shortest-distance problem in T_{ϵ} (T reduced to its ϵ -transitions).

Complexity and implementation

- All-pair shortest-distance algorithm in T_{ϵ} .
 - * k-Closed semirings (for T_{ϵ}) or approximation: generic sparse shortest-distance algorithm [See references].
 - * Closed semirings: Floyd-Warshall or Gauss-Jordan elimination algorithm with decomposition of T_{ϵ} into strongly connected components [See references],

```
space complexity (quadratic): O(|Q|^2 + |E|).
time complexity (cubic): O(|Q|^3(T_{\oplus} + T_{\otimes} + T_*)).
```

- Complexity:
 - * Acyclic T_{ϵ} : $O(|Q|^2 + |Q||E|(T_{\oplus} + T_{\otimes}))$.
 - * General case (tropical semiring): $O(|Q||E| + |Q|^2 \log |Q|)$.
- Lazy implementation: integration with on-the-fly weighted determinization.

ϵ -Removal – Illustration

- Definition: Removes ϵ -transitions
- Example:

Determinization - Algorithm

Definition

- Input: determinizable weighted automaton or transducer M_1 .
- Output: $M_2 \equiv M_1$ subsequential or deterministic: M_2 has a unique initial state and no two transitions leaving the same state share the same input label.

Description

- 1. Generalization of subset construction: weighted subsets $\{(q_1, w_1), \ldots, (q_n, w_n)\}, w_i \text{ remainder weight at state } q_i.$
- 2. Weight of a transition in the result: \oplus -sum of the original transitions pre- \otimes -multiplied by remainders.

Conditions

- Semiring: weakly left divisible semirings.
- -M is determinizable \equiv the determinization algorithm applies to M.
- All unweighted automata are determinizable.
- All acyclic machines are determinizable.

- Not all weighted automata or transducers are determinizable.
- Characterization based on the twins property.
- Complexity and Implementation
 - Complexity: exponential.
 - Lazy implementation.

Determinization of Weighted Automata – Illustration

• Definition: Creates an equivalent deterministic weighted automaton

• Example:

OpenFst

Part I. Algorithms

Determinization of Weighted Transducers – Illustration

• Definition: Creates an equivalent deterministic weighted transducer

Determinization of Weighted Automata – Pseudocode

```
DETERMINIZATION (A)
  1 \quad i' \leftarrow \{(i, \lambda(i)) : i \in I\}
  2 \quad \lambda'(i') \leftarrow \overline{1}
  3 \quad S \leftarrow \{i'\}
  4 while S \neq \emptyset do
  5
       p' \leftarrow \text{HEAD}(S)
                 Dequeue(S)
                 for each x \in i[E[Q[p']]] do
  8
                          w' \leftarrow \bigoplus \{v \otimes w : (p,v) \in p', (p,x,w,q) \in E\}
                          q' \leftarrow \{(q, \bigoplus \{w'^{-1} \otimes (v \otimes w) : (p, v) \in p', (p, x, w, q) \in E\}) :
  9
                                     q = n[e], i[e] = x, e \in E[Q[p']]
                          E' \leftarrow E' \cup \{(p', x, w', q')\}
 10
                          if q' \not\in Q' then
 11
                                   Q' \leftarrow Q' \cup \{q'\}
 12
                                   if Q[q'] \cap F \neq \emptyset then
 13
                                             F' \leftarrow F' \cup \{q'\}
 14
                                             \rho'(q') \leftarrow \bigoplus \{v \otimes \rho(q) : (q, v) \in q', q \in F\}
 15
                                    ENQUEUE(S, q')
 16
        return A'
 17
```

Pushing - Algorithm

Definition

- Input: weighted automaton or transducer M_1 .
- Output: $M_2 \equiv M_1$ such that:
 - * the longest common prefix of all outgoing paths is minimal, or
 - * the \oplus -sum of the weights of all outgoing transitions = $\overline{1}$ modulo the string/weight at the initial state.
- Description (two stages):
 - 1. Single-source shortest distance computation: for each state q,

$$d[q] = \bigoplus_{\pi \in P(q,F)} w[\pi]$$

2. Reweighting: for each transition e such that $d[p[e]] \neq \overline{0}$,

$$w[e] \leftarrow (d[p[e]])^{-1}(w[e] \otimes d[n[e]])$$

- Conditions (automata case)
 - Weakly divisible semiring.
 - Zero-sum free semiring or zero-sum free machine.

Complexity

- Automata case
 - * Acyclic case (linear): $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - * General case (tropical semiring): $O(|Q| \log |Q| + |E|)$.
- Transducer case: $O((|P_{max}| + 1) |E|)$.

Weight Pushing – Illustration

- Definition: Creates an equivalent pushed/stochastic machine
- Example:
 - Tropical semiring

Log semiring

Label Pushing – Illustration

- Definition: Minimizes at each state the length of the common prefix of all outgoing paths at that state.
- Example:

Minimization – Algorithm

Definition

- Input: deterministic weighted automaton or transducer M_1 .
- Output: deterministic $M_2 \equiv M_1$ with minimal number of states and transitions.
- Description: two stages
 - 1. Canonical representation: use pushing or other algorithm to standardize input automata.
 - 2. Automata minimization: encode pairs (label, weight) as labels and use classical unweighted minimization algorithm.

Complexity

- Automata case
 - * Acyclic case (linear): $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - * General case (tropical semiring): $O(|E| \log |Q|)$.
- Transducer case
 - * Acyclic case: $O(S + |Q| + |E|(|P_{max}| + 1))$.
 - * General case: $O(S + |Q| + |E| (\log |Q| + |P_{max}|))$.

Minimization – Illustration

- Definition: Computes a minimal equivalent deterministic machine
- Example:

Equivalence – Algorithm

Definition

- Input: deterministic weighted automata A_1 and A_2 .
- Output: TRUE if $A_2 \equiv A_1$, FALSE otherwise.
- Description: two stages
 - 1. Canonical representation: use pushing or other algorithm to standardize input automata.
 - 2. Test: encode pairs (label, weight) as labels and use classical algorithm for testing the equivalence of unweighted automata.

Complexity

- First stage: $O((|E_1| + |E_2|) + (|Q_1| + |Q_2|) \log(|Q_1| + |Q_2|))$ if using pushing in the tropical semiring.
- Second stage (quasi-linear): $O(m \alpha(m, n))$ where $m = |E_1| + |E_2|$ and $n = |Q_1| + |Q_2|$, and α is the *inverse of Ackermann's function*.

Equivalence – Illustration

- Definition: $A_1 \equiv A_2$ iff $[A_1](x) = [A_2](x)$ for all x
- Graphical Representation:

Single-Source Shortest-Distance Algorithms – Algorithm

- Generic single-source shortest-distance algorithm
 - Definition: for each state q,

$$d[q] = \bigoplus_{\pi \in P(q,F)} w[\pi]$$

- Works with any queue discipline and any semiring k-closed for the graph.
- Coincides with classical algorithms in the specific case of the tropical semiring and the specific queue disciplines: shortest-first (Dijkstra), FIFO (Bellman-Ford), or topological sort order (Lawler).

• N-shortest paths algorithm

- General N-shortest paths algorithm augmented with the computation of the potentials.
- On-the-fly weighted determinization for n-shortest strings.

N-Shortest Paths – Illustration

- Definition: Computes the N-shortest paths in the input machine
- Condition: Semiring needs to have the path property: $a \oplus b \in \{a, b\}$ (e.g. tropical semiring)
- Example:

Pruning - Illustration

- Definition: Removes any paths which weight is more than the shortest-distance ⊗-multiply by a specified threshold
- Condition: Semiring needs to be commutative and have the path property: $a \oplus b \in \{a, b\}$ (e.g. tropical semiring)
- Example:

String Algorithms – Overview

- How to implement some fundamental string algorithms using the operations previously described:
 - Counting patterns (e.g. *n*-grams) in automata
 - Pattern matching using automata
 - Compiling regular expression into automata
- Benefits: generality, efficiency and flexibility

Counting from weighted automata

• Expected count of x in A:

Let A be a weighted automaton over the probability semiring,

$$c(x) = \sum_{u \in \Sigma^*} |u|_x \, \llbracket A \rrbracket(u)$$

where:

- $-|u|_x$: number of occurrences of x in u
- [A](u): weight associated to u by A
 - $\rightarrow \Pr(u)$ if A is pushed

• Condition:

The weight of any cycle in A should be less than 1. This is the case if A represents a probability distribution.

Counting by composition with a transducer

• Counting transducer T for set of sequences X with $\Sigma = \{a, b\}$:

To each successful path π in A and each occurrence of x along π

- \rightarrow corresponds a successful path with output x in $A \circ T$
- $\rightarrow c(x)$ is the sum of the weight of all the successful path with output x in $A \circ T$

• Theorem:

Let Π_2 denote projection onto output labels. For all $x \in X$,

$$c(x) = \llbracket \Pi_2(A \circ T) \rrbracket(x)$$

Counting with transducers – Example

Local Grammar – Algorithm

[Mohri, 94]

Definition

- Input: a deterministic finite automaton A
- Output: a compact representation of $det(\Sigma^*A)$

Description

- A generalization of [Aho-Corasick, 75]
- Failure transitions: labeled by ϕ , non-consuming, traversed when no transition with required label is present
- Default transitions: labeled by ρ , consuming, traversed when no transition with required label is present, only present at the initial state

Local Grammar – Illustration

• Pattern matching: find all occurences of pattern A in text T $T = abbaabaab, A = ab^+a$

• Complexity: search time linear in |T|

Regular Expression Compilation – Algorithms

Definition

- Input: a (weighted) regular expression α
- Output: a (weighted) automata representing α
- Description: Thompson construction
 - 1. Build a sparse tree for α
 - 2. Walk the tree bottom-up and apply the relevant rational operation at each node
- Complexity and implementation
 - Linear in the length of α
 - Admits lazy implementation
- Other constructions (Glushkov, Antimirov, Follow) can be obtained from Thompson using epsilon-removal and minimization

Regular Expression Compilation – Thompson

- Regular expression: $\alpha = (2ab + 3b(4ab)^*)^*$
- Thompson automaton:

Regular Expression Compilation – Glushkov

- Regular expression: $\alpha = (2ab + 3b(4ab)^*)^*$
- Glushkov automaton:

$$A_G(\alpha) = \text{rmeps}(A_T(\alpha))$$