OpenFst: An Open-Source, Weighted Finite-State Transducer Library and
its Applications to Speech and Language

Part |. Theory and Algorithms

Overview

1. Preliminaries

e Semirings

e Weighted Automata and Transducers
2. Algorithms

e Rational Operations

e Elementary Unary Operations

e Fundamental Binary Operations

e Optimization Algorithms

e Search Operations

e Fundamental String Algorithms

OpenF'st Part I. Algorithms

Overview

Weight Sets: Semirings
A semiring (K, ®, ®,0,1) = a ring that may lack negation.

e Sum: to compute the weight of a sequence (sum of the weights of the paths
labeled with that sequence).

e Product: to compute the weight of a path (product of the weights of con-
stituent transitions).

SEMIRING SET & || 0 |1
Boolean {0,1} V A 0 1
Probability R4 + X 0 1
Log RU{—00,+00} | @rog | + | +o0 | O
Tropical RU{—0c0,400} | min | + | 400 | O
String YU {0} A : 0o | €

Blog is defined by: x P10y = —log(e™* +e7Y) and A is longest common prefix.
The string semiring is a left semiring.

OpenF'st Part I. Algorithms Preliminaries

Weighted Automaton/Acceptor

Probability semiring (R, 4+, x,0,1) | Tropical semiring (R4+ U {occ}, min, 4+, 0o, 0)

[A](ab) = 14 [A](ab) = 4
(IXx1x242x3x2=14) (min(1+1+2,34242)=4)

OpenF'st Part I. Algorithms Preliminaries 3

Weighted Transducer

Probability semiring (R4, +, x,0,1) | Tropical semiring (R4 U {occ}, min, +, 0o, 0)

[T](ab,r) = 16 [T](ab,7) =5
(I1x2x24+3x2x2=16) (min(14+2+2,34+2+2) =5)

OpenF'st Part I. Algorithms Preliminaries 4

Transducers as Weighted Automata

A transducer T is functional iff for each x there exists at most one y such that
[T](z,y) # 0

e An unweighted functional transducer can be seen as as:
— a weighted automata over the string semiring (X" U {oo} , A, -, 00, €)

e A weighted functional transducer over the semiring K can be seen as:

— a weighted automata over the cartesian product of the string semiring
and K

[T](ab,7) =5 [A](ab) = (r,5)
[Tropical semiring (R4 U {occ}, min, 4, co, 0)]

OpenF'st Part I. Algorithms Preliminaries

Definitions and Notation — Paths

e Path 7
— Origin or previous state: p[mw].
— Destination or next state: n[r].
— Input label: i[r].
— Output label: o[rx].

e Sets of paths
— P(Ri1, R2): set of all paths from R; C @Q to Ra C Q.
— P(R1,x, R2): paths in P(R1, R2) with input label .
— P(R1,x,y, R2): paths in P(R1,x, R2) with output label .

OpenF'st Part I. Algorithms Preliminaries

Definitions and Notation — Automata and Transducers

1. General Definitions

e Alphabets: input X, output A.

e States: (), initial states I, final states F'.

e Transitions: £ C Q x (XU {e}) x (AU{e}) x K x Q.
e Weight functions:

initial weight function A : I — K

final weight function p: F' — K.

2. Machines
e Automaton A = (X,Q, I, F, E,), p) with for all z € ¥*:

[Al(x) = @ Aplr) @ win] © p(n[x])

nweP(I,x,F)

e Transducer T'= (X, A,Q, I, F, E,)\, p) with for all x € X",y € A™:
[Tl(z,y)= @ Abr]) © wx] © p(n[x])

meP(I,x,y,F)

OpenF'st Part I. Algorithms Preliminaries

Rational Operations — Algorithms

e Definitions

OPERATION | DEFINITION AND NOTATION

Sum [Th & T2](x, y) = [T1](z,y) ® [T2](z, y)

Product [T @ Dlzy) = @ [N, un) @[]z y2)
T=T1T2,Y=Y1Y2

Closure [T*](x,y) @[[T

e Conditions on the closure operation: condition on 71" e.g. weight of e-cycles
= 0 (regulated transducers), or semiring condition: e.g. 1 ® x = 1 as with
the tropical semiring (locally closed semirings).

e Complexity and implementation

— Complexity (linear): O((|E1| + [Q1]) + (|1E2| 4 |Qz])) or O(|Q[+ |E]).

— Lazy implementation.

OpenF'st Part I. Algorithms Rational Operations

Sum (Union) — lllustration
e Definition: [T1 & T2](x,y) = [T1](x,y) & [T2](x,y)

e Example:

red/0.5 green/04
0 green/03 /1\ blued

yellow/0.6

blue/0
yellow/0.6

OpenF'st Part I. Algorithms Rational Operations

Product (Concatenation) — lllustration

e Definition: [T1 ® T2](

e Example:

red/0.5

T,y) = P

[[Tl]](xla yl) ® [[TQ]](CE% y2)

LT=TL1L2,Y=Y1Y2

{OS green/03 /") blue/0
yellow/0.6

red/0.5

(1) blueld /)

reen/0.4

g

green/0.4

e 05 green/0.3 .

yellow/0.6 J

OpenF'st Part I. Algorithms

eps0.8 3 Q
- blue/1.2 ll

Rational Operations

10

Closure — lllustration

e Definition: [T*](z,y) = @[[Tn]](l‘,y)

green/0.4

blue/1.2

e Example:

OpenF'st Part I. Algorithms

Rational Operations

11

Some Elementary Unary Operations — Algorithms

e Definitions

OPERATION | DEFINITION AND NOTATION | LAZY IMPLEMENTATION
Reversal T)(z,y) = [T](Z,7) No
Inversion T (z,y) = [T](y, z) Yes
Projection 11, (T)](x) = @[[T]](az, Y) Yes
Y
[o(T)](z) = EPIT(y, x)
Y
e Complexity and implementation
— Complexity (linear): O(|Q| + |E|).
— Lazy implementation (see table).
OpenF'st Part I. Algorithms Elementary Unary Operations 12

Reversal — lllustration

o~

e Definition: [T](x,y) = [T](Z,7)

e Example:

OpenF'st

red/0.5
green/1.2
e OS green/0.3 =f1\ blueld ", 2
yellow/0.6
red/0.5

blueO /7, green03
yellow/0.6

Part I. Algorithms Elementary Unary Operations

13

Inversion — lllustration

e Definition: [T '](z,y) = [T](y, x)

e Example:
red:bird/0.5

green:pig/0.3

bird:red/0.5

pig.green/0.3

OpenF'st Part I. Algorithms

blue:cat/0

yellow:dog/0.6

cat:blue/0

dog:yellow/0.6

Elementary Unary Operations

14

Projection — lllustration

e Definition: [II1(7T)](x) = @[[T]] (x,y)

e Example:
red:bird/0.5
eo 5 green:pig/0.3 =/1—\ blue:cat/0
yellow:dog/0.6
red/0.5
0 green/0.3 blue/0

OpenF'st Part I. Algorithms

yellow/0.6

Elementary Unary Operations

15

Some Fundamental Binary Operations — Algorithms

e Definitions

OPERATION DEFINITION AND NOTATION CONDITION

Composition | [T1 o Ta](z, y) @[[Tl z,z) ® [T2](z,y) | K commutative

Intersection | [A1 N Az2](x) = [A1](z) ® [A2](x) K commutative
Difference [A1 — A2](z) = [A1 N A2](x) Ao unweighted &
deterministic

e Complexity and implementation
~ Complexity (quadratic): O((|E1| + |Qu]) (|Ea| + |Qal)).
— Path multiplicity in presence of e-transitions: e-filter.

— Lazy implementation.

OpenF'st Part I. Algorithms Fundamental Binary Operations 16

Composition — lllustration

o Definition: [T1 o Tu](z,y) = PIT1(x, 2) ® [T2](2,y)

z

e Example:

ab/0.4

OpenF'st Part I. Algorithms Fundamental Binary Operations

Y

ab/0.6

17

Composition — Pseudocode

COMPOSITION(TY, T2)

1

© 00 J O O = W N

e e e e e
S O i W N = O

OpenF'st

S— Q «— 11 X I
while S # () do
(q1,q2) < HEAD(S)
DEQUEUE(S)
if (q1,q2) € I1 X I then
I — I; x Is
A(q1,q2) — A1(q1) ® A2(q2)
if (q1,q2) € F1 X F5 then
F— FU{(q1,92)}
p(q1,q2) <+ p1(q1) ® p2(q2)
for each(ei, ez) such that ole;] = i[ez] do
if (nle1], nlez]) € Q then
Q — QU {(n[e1],n[ez])}
ENQUEUE(S, (n[e1], n[e2]))
E — EU{((q1,q92),ile1], olez], wle1] ® wlez], (n[e1], nlez]))}
return T = (X, A, Q, I, F,E, \, p)

Part I. Algorithms Fundamental Binary Operations

18

Multiplicity & e-Transitions — Problem

T C:g@ d: T, @ a:d@ e:

g€l g€l el g€l €€l g2:¢ g2:¢ g2:¢ €2:€

le b:e?,@ c:e T2: @a‘d@sl:

— Redundant e-paths

OpenF'st Part I. Algorithms Fundamental Binary Operations 19

OpenF'st

Solution — Filter F' for Composition

Filter F

— Replace T o Ts by Ty o FoTs.

Part I. Algorithms

Fundamental Binary Operations

20

e Example:

red/0.5

green/0.3

OpenF'st

Intersection — lllustration

e Definition: [A1 N A2](x) = [A1](z) ® [A2](x)

blue/O
yellow/0.6

Part I. Algorithms

yellow/1.3

blue/0.6

yellow/1.9

Fundamental Binary Operations

21

Difference — lllustration

o Definition: [A; — Az](x) = [A1 N Az] (=)

e Example:
red/0.5 green
éos green/03 /7 ") blue/0 @ red ‘@ yellow ‘@
yellow/0.6 blue
red/0.5
red05 _(1 red/0.5
0 green/0.3 blue/0

yellow/0.6

OpenF'st Part I. Algorithms Fundamental Binary Operations 22

Optimization Algorithms — Overview

e Definitions

OPERATION DESCRIPTION
Connection Removes non-accessible /non-coaccessible states
e-Removal Removes e-transitions

Determinization | Creates equivalent deterministic machine

Pushing Creates equivalent pushed/stochastic machine

Minimization Creates equivalent minimal deterministic machine

e Conditions: There are specific semiring conditions for the use of these
algorithms. Not all weighted automata or transducers can be determinized
using that algorithm.

OpenF'st Part I. Algorithms Optimization Algorithms

Connection — Algorithm

e Definition

— Input: weighted transducer T7.

— Output: weighted transducer T> = 1} with all states connected.
e Description

1. Depth-first search of T from I;.

2. Mark accessible and coaccessible states.

3. Keep marked states and corresponding transitions.
e Complexity and implementation

— Complexity (linear): O(|Q1| + |F1]).

— No natural lazy implementation.

OpenF'st Part I. Algorithms Optimization Algorithms

24

Connection — lllustration

e Definition: Removes non-accessible/non-coaccessible states

@ green/0.2

e Example:

red/0.5

0 green/0.3
red/0.5

0 green/0.3

OpenF'st Part I. Algorithms Optimization Algorithms

25

e-Removal — Algorithm

e Definition

— Input: weighted transducer 77 with e-transitions.

— Output: weighted transducer T> = T} with no e-transition.

e Description (two stages):

OpenF'st

1. Computation of e-closures: for any state p, states ¢ that can be reached
from p via e-paths and the total weight of the e-paths from p to q.

Clp] = {(¢,w) : q € €[p], d[p,q] = w # 0}
with:

dp.dd= @ wlnl

mEP(p,e,q)

2. Removal of €'s: actual removal of e-transitions and addition of new

transitions.

—> All-pair K-shortest-distance problem in T: (T reduced to its e-
transitions).

Part I. Algorithms Optimization Algorithms

26

e Complexity and implementation

— All-pair shortest-distance algorithm in 7.
* k-Closed semirings (for T.) or approximation: generic sparse shortest-
distance algorithm [See references].
x Closed semirings: Floyd-Warshall or Gauss-Jordan elimination algo-
rithm with decomposition of 7. into strongly connected components
[See references],
space complexity (quadratic): O(|Q|* + |E|).
time complexity (cubic): O(|Q|* (T + T + T)).
— Complexity:
« Acyclic To: O(QP + |QIIEI(Ts + Ta)).
+ General case (tropical semiring): O(|Q||E| + |Q|* log|Q)).
— Lazy implementation: integration with on-the-fly weighted determiniza-

tion.

OpenF'st Part I. Algorithms Optimization Algorithms

27

e-Removal — lllustration
e Definition: Removes e-transitions

e Example:

€:€/0.3

T e-Distances
aall6

OpenF'st Part I. Algorithms Optimization Algorithms 28

Determinization — Algorithm

e Definition
— Input: determinizable weighted automaton or transducer M;.

— Qutput: My = M, subsequential or determanistic: Mo has a unique
initial state and no two transitions leaving the same state share the
same input label.

e Description

1. Generalization of subset construction: weighted subsets
{(q1,w1),...,(qn,wn)}, w; remainder weight at state ¢;.

2. Weight of a transition in the result: @-sum of the original transitions
pre-®-multiplied by remainders.
e Conditions
— Semiring: weakly left divisible semirings.
— M is determinizable = the determinization algorithm applies to M.
— All unweighted automata are determinizable.

— All acyclic machines are determinizable.

OpenF'st Part I. Algorithms Optimization Algorithms

— Not all weighted automata or transducers are determinizable.

— Characterization based on the twins property.

e Complexity and Implementation
— Complexity: exponential.

— Lazy implementation.

OpenF'st Part I. Algorithms Optimization Algorithms

30

Determinization of Weighted Automata — lllustration
e Definition: Creates an equivalent deterministic weighted automaton

e Example: o1

all ‘ b/1

b/1 b/3

OpenF'st Part I. Algorithms Optimization Algorithms

31

Determinization of Weighted Transducers — lllustration
e Definition: Creates an equivalent deterministic weighted transducer

e Example: 'b/0.6
P b:eps/0.4 &

{(0,b, 0)}

aeps/0.1

{(0, eps, 0)} .| {(Lc04),

(2,2 0)}

ab/0.6

{(3,b,0),
(4, eps, .1)}
/(eps, 0.8)

{(4, eps, 0)}
/(eps, 0.7)

OpenF'st Part I. Algorithms Optimization Algorithms

32

Determinization of Weighted Automata — Pseudocode

DETERMINIZATION(A)

1

© 00 N O Ot = W N

10
11
12
13
14
15
16
17

OpenF'st

i — {(i,\(3)) i€ I}
AN(@GE) —1
S — {z’}
while S # () do

p’ «— HEAD(S)

DEQUEUE(S)

for each = € i[E[Q[p]]] do

w — @{v@w: (p,v) €p',(p,z,w,q) € E}

¢ —{(¢.B{v '@ (WwRwW): (p,v) €P,(p,z,w,q) €EE}):

q = nlel,ile] = z,e € E[Q[p]]}
E' — E U{(,zw, q)}
if ¢ € Q' then
Q/ - Q/ U {q/}
if Q[¢'] N F # () then
F'— F'u{q}
p'(q) —BD{v®plq):(¢v) €q,q€ F}
ENQUEUE(S, q¢")

/
return A

Part I. Algorithms Optimization Algorithms

33

Pushing — Algorithm
e Definition

— Input: weighted automaton or transducer M;.
— Output: Ms = M; such that:

*x the longest common prefix of all outgoing paths is minimal, or
* the @-sum of the weights of all outgoing transitions = 1 modulo the
string /weight at the initial state.

e Description (two stages):

1. Single-source shortest distance computation: for each state g,

dlgf= @ wln]

TP (q,F)

2. Reweighting: for each transition e such that d[ple]] # 0,

wle] — (dlple]]) ™ (wle] ® dln[e]])

OpenF'st Part I. Algorithms Optimization Algorithms

34

e Conditions (automata case)

— Weakly divisible semiring.

— Zero-sum free semiring or zero-sum free machine.
e Complexity

— Automata case

* Acyclic case (linear): O(|Q| + |E|(Te + Tg)).

« General case (tropical semiring): O(|Q|log|Q| + |E|).
— Transducer case: O((|Pmaz| + 1) |E)).

OpenF'st Part I. Algorithms Optimization Algorithms

35

Weight Pushing — lllustration
e Definition: Creates an equivalent pushed/stochastic machine

e Example:

— Tropical semiring

OpenF'st Part I. Algorithms Optimization Algorithms

36

OpenF'st

— Log semiring

Part I. Algorithms

a/0.3266

€/0.3132

b/1.3266
f/1.3132

c/4.3266
€/0.3132

d/10.326

f/1.3132

Optimization Algorithms

37

Label Pushing — lllustration

e Definition: Minimizes at each state the length of the common prefix of all
outgoing paths at that state.

e Example:

OpenF'st Part I. Algorithms Optimization Algorithms

38

Minimization — Algorithm
e Definition
— Input: deterministic weighted automaton or transducer M;.
— Qutput: deterministic Ms = M; with minimal number of states and
transitions.
e Description: two stages

1. Canonical representation: use pushing or other algorithm to standardize
input automata.

2. Automata minimization: encode pairs (label, weight) as labels and use

classical unweighted minimization algorithm.
e Complexity

— Automata case
* Acyclic case (linear): O(|Q| + |E|(Te + Tg)).
* General case (tropical semiring): O(|E|log|Q)|).

— Transducer case
* Acyclic case: O(S + |Q| + |E| (| Pmaz| + 1)).
* General case: O(S + |Q| + |E| (log |Q| + | Pnaz]))-

OpenF'st Part I. Algorithms Optimization Algorithms

39

Minimization — lllustration
e Definition: Computes a minimal equivalent deterministic machine

e Example:

OpenF'st Part I. Algorithms Optimization Algorithms

40

Equivalence — Algorithm

e Definition
— Input: deterministic weighted automata A; and As.

— Output: TRUE if As = A1, FALSE otherwise.

e Description: two stages

1. Canonical representation: use pushing or other algorithm to standardize
input automata.

2. Test: encode pairs (label, weight) as labels and use classical algorithm
for testing the equivalence of unweighted automata.

e Complexity

— First stage: O((|E1| + |Ez2]) + (|Q1] + [Q2]) log(|Q1| + [Q2])) if using
pushing in the tropical semiring.

— Second stage (quasi-linear): O(m a(m,n)) where m = |E1| + |F2| and
n = |Q1| + |Qz2|, and « is the inverse of Ackermann’s function.

OpenF'st Part I. Algorithms Optimization Algorithms

41

Equivalence — lllustration
e Definition: A1 = A, iff [A1](z) = [A2](x) for all x

e Graphical Representation:

blue/0.7

yellow/0.9

=7

blue/0
yellow/0.3

OpenF'st Part I. Algorithms Optimization Algorithms

Single-Source Shortest-Distance Algorithms — Algorithm

e Generic single-source shortest-distance algorithm

— Definition: for each state ¢,

dlgf= @ wln]

meP(q,F)

— Works with any queue discipline and any semiring k-closed for the
graph.

— Coincides with classical algorithms in the specific case of the tropical
semiring and the specific queue disciplines: shortest-first (Dijkstra),
FIFO (Bellman-Ford), or topological sort order (Lawler).

e N-shortest paths algorithm

OpenF'st

— General N-shortest paths algorithm augmented with the computation
of the potentials.

— On-the-fly weighted determinization for n-shortest strings.

Part I. Algorithms Search Operations

43

N-Shortest Paths — lllustration
e Definition: Computes the N-shortest paths in the input machine

e Condition: Semiring needs to have the path property: a @ b € {a, b}
(e.g. tropical semiring)

e Example:
red/0.5

red/0.5 1 red/o.5 - 2 green/0.3
0 green/0.3 >~ 3 blue/0

yellow/0.6

@ green03 /7 0\ bluel0
_/

»
L

OpenF'st Part I. Algorithms Search Operations

44

Pruning — lllustration

e Definition: Removes any paths which weight is more than the shortest-
distance ®-multiply by a specified threshold

e Condition: Semiring needs to be commutative and have the path property:

a®be {a, b} (e.g. tropical semiring)

e Example:

red/0.5 1 redos 7 green/0.3
0 green/0.3 ~(3 blue/0

@ green/03 /7) blue/0

yellow/0.6

\

OpenF'st Part I. Algorithms Search Operations

45

String Algorithms — Overview

e How to implement some fundamental string algorithms using the opera-
tions previously described:
— Counting patterns (e.g. n-grams) in automata

— Pattern matching using automata

— Compiling regular expression into automata,

e Benefits: generality, efficiency and flexibility

OpenF'st Part I. Algorithms String Algorithms

46

Counting from weighted automata

e Expected count of z in A:

Let A be a weighted automaton over the probability semiring,
c(z) =) |ul, [A](w)
ued*
where:

— |u|z: number of occurrences of z in u

— [A](u): weight associated to u by A
— Pr(u) if A is pushed

e Condition:
The weight of any cycle in A should be less than 1.
This is the case if A represents a probability distribution.

OpenF'st Part I. Algorithms String Algorithms

47

Counting by composition with a transducer
e Counting transducer T for set of sequences X with X = {a, b}:

b/l b/l

ae/l
:X/
(0)-Y-(T) X (2) Y . (0)-UE(T) XX.(3) v:s‘@

in A in AoT

To each successful path 7w in A and each occurence of x along 7
— corresponds a successful path with output x in Ao T
— c¢(x) is the sum of the weight of all the successful path
with output x in Ao T
e Theorem:
Let II2 denote projection onto output labels. For all x € X,

c(z) = [M2(A o T)](z)

OpenF'st Part I. Algorithms String Algorithms

48

Counting with transducers — Example
C.€ C.E

Counting transducer T

[T12(A o T)](ab) = 3 = c(ab)

OpenF'st Part I. Algorithms String Algorithms 49

Local Grammar — Algorithm

[Mohri, 94]

e Definition
— Input: a deterministic finite automaton A

— Output: a compact representation of det(X*A)

e Description
— A generalization of [Aho-Corasick, 75]

— Failure transitions: labeled by ¢, non-consuming, traversed when no
transition with required label is present

— Default transitions: labeled by p, consuming, traversed when no transi-
tion with required label is present, only present at the initial state

OpenF'st Part I. Algorithms String Algorithms

50

Local Grammar — lllustration

e Pattern matching: find all occurences of pattern A in text T
T = abbaabaab, A = ab™ a

b

oForore

A

(00210 222232 2(43)- (2 (-2 (r2) (232
T Ndet(X*A)

e Complexity: search time linear in |T|

OpenF'st Part I. Algorithms String Algorithms

51

Regular Expression Compilation — Algorithms

e Definition
— Input: a (weighted) regular expression «

— Output: a (weighted) automata representing «

e Description: Thompson construction
1. Build a sparse tree for «
2. Walk the tree bottom-up and apply the relevant rational operation at
each node
e Complexity and implementation
— Linear in the length of «
— Admits lazy implementation

e Other constructions (Glushkov, Antimirov, Follow) can be obtained from
Thompson using epsilon-removal and minimization

OpenF'st Part I. Algorithms String Algorithms

Regular Expression Compilation — Thompson
e Regular expression: a = (2ab + 3b(4ab)™)*

e Thompson automaton:

/0

b/0

cla

yQ/ £l 5) /0

Y e/0
N4

€/0

€/0

Ar ()

OpenF'st Part I. Algorithms String Algorithms 53

Regular Expression Compilation — Glushkov
e Regular expression: a = (2ab + 3b(4ab)™)*

e Glushkov automaton:

OpenF'st Part I. Algorithms String Algorithms

54

