
OpenFst: An Open-Source, Weighted Finite-State Transducer Library and its
Applications to Speech and Language

Part III. Applications

FST Applications

Weighted finite-state transducers have been used in speech recognition, optical charac-

ter recognition, machine translation, text-to-speech synthesis, information extraction,

data mining, and fraud detection.

Current OpenFst applications:

• Speech recognition (speech-to-text):

– Search graphs, phone and word lattices

– Segmentations, context-dependency representation

– Lexicons and language models

– ‘Context-free’ grammars (with semantic output)

– Text denormalization

• Speech synthesis (text-to-speech):

– Tokenization and text normalization

– Pronunciation models

• Optical character recognition – lexicons, language models, search graphs

• Machine translation – translation models, language models, decoding

• Information extraction – large-scale regular-expression matching

OpenFst Part III. Applications Overview 1

Why (Weighted) Finite-State Transducers?

• Finite-state acceptors and transducers can efficiently represent certain (the regu-

lar or rational) sets and binary relations over string.

• Weights can represent probabilities, costs, etc associated with alternative, uncer-

tain data.

• Optimization operations (determinization, minimization) can be used to minimize

redundancy and size.

• Composition can be used to efficiently recognize inputs and cascade transductions.

• OpenFst has been used with FSTs of many millions of states and arcs (there is

even a distributed FST representation in development).

OpenFst Part III. Applications Overview 2

Common parts of FST Applications

• Models

– Constructed

∗ Regular expressions

∗ Rewrite rules

∗ Context-dependency transducer

∗ Recognition grammars

– Learned

∗ n-gram language models

∗ Pair n-gram language models

∗ Weighted edit distance

• Cascades and Search

– Composition and intersection

– ShortestPath and ShortestDistance

– FST optimization

OpenFst Part III. Applications Overview 3

Keyword Detection

• C identifiers: {char, const, continue, if, int, else, short, signed, sizeof}

• Linear search:
if (token == "char") return 1;

if (token == "const") return 1;

if (token == "oontinue") return 1;

if (token == "if") return 1;

if (token == "int") return 1;

if (token == "else") return 1;

if (token == "short") return 1;

if (token == "signed") return 1;

if (token == "sizeof") return 1;

else return 0;

OpenFst Part III. Applications Keyword Detection 4

Keyword Detection – Binary Search

vector<string> keywrds;

keywrds.push back("char");

keywrds.push back("continue");

keywrds.push back("else");

keywrds.push back("if");

keywrds.push back("int");

keywrds.push back("short");

keywrds.push back("signed");

keywrds.push back("sizeof");

return binary search(keywrds.begin(), keywrds.end(), token);

OpenFst Part III. Applications Keyword Detection 5

Keyword Detection – Automata Search

• Search by intersecting token string with automaton.

• Token string must be represented as an FST:

0 1
i

2
n

3
t

• Intersect(token, keywords, &result);

OpenFst Part III. Applications Keyword Detection 6

String FSTs

#inc lude < f s t / f s t l i b . h>

us ing fst : : S y m b o l T a b l e ;

us ing fst : : S t d A r c ;

us ing fst : : S t d V e c t o r F s t ;

bool S t r i n g F s t (const vector<string> &symbols ,

const S y m b o l T a b l e ∗ symtab ,

S t d V e c t o r F s t ∗ fst) {
S t d V e c t o r F s t : : S t a t e I d q = fst−>A d d S t a t e () ;

fst−>S e t S t a r t (q) ;

f o r (i n t i = 0; i < s y m b o l s . s i z e () ; ++i) {
S t d A r c : : L a b e l lbl = symtab−>F i n d (s y m b o l s [i]) ;

i f (fst : : k N o L a b e l == lbl) re turn f a l s e ;

S t d V e c t o r F s t : : S t a t e I d r = fst−>A d d S t a t e () ;

fst−>A d d A r c (q , S t d A r c (lbl , lbl , S t d V e c t o r F s t : : W e i g h t : : One () , r)) ;

q = r ;

}
fst−>S e t F i n a l (q , S t d V e c t o r F s t : : W e i g h t : : One ()) ;

r e turn true ;

}

OpenFst Part III. Applications Keyword Detection 7

Keyword Detection – Automata Search (continued)

0	

1	c

5	c

10	c

18	i

20	
i

23	

e

27	

s

32	

s

38	

s

2	
h

6	
o

11	
o

19	
f

21	
n

24	
l

28	
h

33	
i

39	
i

3	
a

4	
r

7	
n

8	
s

9	
t

12	
n

13	
t

14	
i

15	
n

16	
u

17	
e

22	
t

25	
s

26	
e

29	
o

30	
r

31	
t

34	
g

35	
n

36	
e

37	
d

40	
z

41	
e

42	
o

43	
f

OpenFst Part III. Applications Keyword Detection 8

Keyword Detection – Deterministic Search

0	

1	c

2	e

3	

i

4	

s

5	h

6	
o

7	
l

8	
f

9	

n

10	
h

11	

i

12	
a

13	
n

14	

s

15	
t

16	
o

17	
g

18	

z

19	
r

20	s

21	

t

22	
e

23	
r

24	
n

25	
e

26	
t

27	
i

28	
t

29	
e

30	
o

31	
n

32	
d

33	
f

34	
u

35	
e

OpenFst Part III. Applications Keyword Detection 9

Keyword Detection – Minimal Deterministic Search

0	

1	c

2	e

3	

i

4	

s

5	
h

6	
o

7	
l

24	f

8	n

9	
h

10	

i

11	
a

12	
n

13	
s

t

14	

o

15	

g

16	z

r

s

17	t

e

r

18	
n

19	
e

20	

i

21	
e

22	
o

23	

n

d

f

u

OpenFst Part III. Applications Keyword Detection 10

Pattern Matching – Dictionaries

• Equation: M = Σ∗D

• Graphical Representation:

0	

a
c

o
r
s
t
u
z

d
e
f
g
h
i
l
n

1	
eps

2	c

3	e

4	

i

5	

s

6	
h

7	
o

8	
l

25	f

9	n

10	
h

11	

i

12	
a

13	
n

14	
s

t

15	

o

16	

g

17	z

r

s

18	t

e

r

19	
n

20	
e

21	

i

22	
e

23	
o

24	

n

d

f

u

• Determinize using failure transitions; search by intersecting token string with

automaton.

OpenFst Part III. Applications Pattern Matching 11

Pattern Matching – Regular Expressions

• Single Regular Expressions:

– Compile each regular expression into an automaton. Proceed as above.

• Multiple Regular Expressions:

– Matching regular patterns P1 . . . PN in string s: if N and |s| are large, then

matching every pattern separately is very inefficient

– Solution: create acceptor for the language P = Σ∗(P1 ∪ ... ∪ PN). Insert

markers indicating the start and the end of a match. Search by intersecting

P with the input text.

• Optimizations/improvements

– Failure transitions, Aho-Corasick algorithm and its generalizations.

– Support for weights and outputs.

OpenFst Part III. Applications Pattern Matching 12

Pattern Matching – Context-Free Rules

• Context-free rules (with restrictions). Rules may have weights and outputs -

supports semantic annotation using JavaScript.

W3C Standard: http://www.w3.org/TR/speech-grammar.

• Each rule compiled into an FST over the alphabet of terminal and non-terminal

symbols.

• Rules are combined into a top-level lazy FST where non-terminals are dynamically

replaced by their corresponding rule FSTs.

• Parse using FST composition and shortest-path algorithms.

OpenFst Part III. Applications Pattern Matching 13

Hangman Game

• Guess an orthographic word letter-by-letter, knowing only its length.

• Player 1 guesses one letter at a time.

• If the word contains that letter, Player 2 reveals all occurrences of it.

• Otherwise Player 2 gains one point.

• The game ends when Player 2 reaches a certain number of points or when Plaer

1 has uncovered the word.

• Let’s help Player 1, using FSTs.

• Need one FST to represent the state of the game board.

OpenFst Part III. Applications Hangman 14

Hangman – Board

• Initially a sausage:

0 1

a

b

c

d

2

a

b

c

d

3

c

d

a

b

• After Player 1 correctly guesses an ‘a’:

0 1

b

c

d

2
a

3

b

c

d

• After Player 1 incorrectly guesses a ‘c’:

0 1
b

d
2

a
3

b

d

• What should Player 1’s next guess be?

OpenFst Part III. Applications Hangman 15

Hangman – Guessing

• Intersect the game board FST with a weighted dictionary (log semiring).

• Compute the expected number of occurrences of each letter.

• Guess the letter with the highest expected occurrence count.

OpenFst Part III. Applications Hangman 16

Computing Expected Counts – Forward/Backward

V e c t o r F s t<L o g W e i g h t> l a t t i c e ;

I n t e r s e c t (board , d i c t i o n a r y , &l a t t i c e) ;

P u s h (& lattice , R E W E I G H T _ T O _ I N I T I A L) ; // Normalize p r o b a b i l i t i e s

vector<L o g W e i g h t> alpha , b e t a ;

S h o r t e s t D i s t a n c e (lattice , &a l p h a) ; // ‘ ‘ Forward ’ ’

S h o r t e s t D i s t a n c e (lattice , &beta , t rue) ; // ‘ ‘ Backward ’ ’

map<Label , L o g W e i g h t> l e t t e r _ c o u n t s ;

// Not shown : I n i t i a l i z e va lues in l e t t e r c o u n t s to LogWeight : : Zero ()

f o r (S t a t e I t e r a t o r <...> s i t e r (l a t t i c e) ; ! s i t e r . D o n e () ; s i t e r . N e x t ()) {
const i n t q = s i t e r . V a l u e () ;

f o r (A r c I t e r a t o r <...> a i t e r (lattice , q) ; ! a i t e r . D o n e () ; a i t e r . N e x t ()) {
const L o g A r c &arc = a i t e r . V a l u e () ;

L o g W e i g h t g a m m a = T i m e s (T i m e s (a l p h a [q] , arc . w e i g h t) , b e t a [arc . n e x t s t a t e]) ;

l e t t e r _ c o u n t s [arc . i l a b e l] = P l u s (l e t t e r _ c o u n t s [arc . i l a b e l] , g a m m a) ;

}
}

OpenFst Part III. Applications Expected Counts 17

Computing Expected Counts – Expectation Semiring

typede f E x p e c t a t i o n W e i g h t<L o g W e i g h t ,

P o w e r W e i g h t<L o g W e i g h t , 26> > > L e t t e r W e i g h t ;

s t r u c t L o g T o L e t t e r M a p p e r () {
pub l i c Arc<L e t t e r W e i g h t> operator () (const Arc<L o g W e i g h> &arc) const {

P o w e r W e i g h t<L o g W e i g h t , 26> t u p l e = P o w e r W e i g h t : : Z e r o () ;

// Assumes that ‘ a ’ corresponds to l a b e l 1 e tc .

t u p l e . S e t V a l u e (arc . ilabel , arc . w e i g h t) ;

r e turn Arc<L e t t e r W e i g h t >(arc . ilabel , arc . olabel ,

L e t t e r W e i g h t (arc . weight , t u p l e) , arc . n e x t s t a t e) ;

}
} ;

V e c t o r F s t<L o g W e i g h t> l a t t i c e ;

I n t e r s e c t (board , d i c t i o n a r y , &l a t t i c e) ;

P u s h (& lattice , R E W E I G H T _ T O _ I N I T I A L) ;

V e c t o r F s t<L e t t e r W e i g h t> e x p c t _ l a t t i c e ;

Map (lattice , &e x p c t _ l a t t i c e , L o g T o L e t t e r M a p p e r ()) ;

L e t t e r W e i g h t e x p c t _ l e t t e r _ c o u n t s = S h o r t e s t D i s t a n c e (e x p c t _ l a t t i c e) ;

OpenFst Part III. Applications Expected Counts 18

Weight Reestimation with EM

Baum–Welch algorithm, an instance of the Expectation/Maximization (EM) meta-

algorithm:

• Compute the expected arc counts (E step), using either:

– Forward-Backward algorithm over Log Semiring; or

– Shortest distance over Expectation Semiring.

• Normalize the arc counts for each state (M step),

perhaps with smoothing or regularization.

OpenFst Part III. Applications Expected Counts 19

Classic String Edit Distance

• Edit operations with costs: insertion, deletion, substitution

• A least-cost alignment of two strings is any least-cost sequence of edit operations

that transforms one string into the other (argmax).

• The edit distance between two strings is the cost of any least-cost sequence of

edit operations that transforms one string into the other (max).

• FST-based solution is as efficient as the classical solution:

Shortest{Distance,Path}(x ◦M ◦ y)

• FST-based solution is much more flexible, since M can be just about anything.

OpenFst Part III. Applications Edit Distance 20

Stochastic Edit Distance Learning

• Often contains a special case where the edit-distance model M is an FST with a

single state

• Special case learning algorithm due to Ristad and Yianilos 1998.

• For each pair (x, y) of similar strings, compute the expected arc counts over

x ◦M ◦ y.

• Use this to compute monotonic alignments of e.g. pronunciation dictionaries.

OpenFst Part III. Applications Edit Distance 21

Latent Alignment Models

• Many string-to-string transformation problems (translation, transliteration, pro-

nunciation modeling) become simpler when expressed with latent alignments.

• Often simple stochastic alignment models are enough to align a given pair of

strings:

– Train a simple stochastic edit distance model.

– Use the simple model to impute latent alignments for the input data.

– Train more complex models on the aligned data.

– Pair n-gram language models.

• One problem: Pair models are join probability models Pr(x, y). When cascading

multiple models like this, we generally need conditional models like Pr(x | y).

Ordinary language modeling tools were not designed with transducers in mind

and do not produce conditional models.

OpenFst Part III. Applications Edit Distance 22

Telephone Keypad Input Method

• Example: T9 transducer (T):

0 1

2:a

2:b

2:c

3:d

3:e

3:f

OpenFst Part III. Applications Input Method 23

• Dictionary transducer:

0

1
b:bad

4
b:badge

9
b:bag

12b:bid

15

b:big

18

b:bud

21

b:budge

26

b:bug

2a:eps

5a:eps

10a:eps

13i:eps

16
i:eps

19
u:eps

22
u:eps

27
u:eps

3d:eps

6d:eps 7
g:eps

8
e:eps

11g:eps

14d:eps

17
g:eps

20
d:eps

23
d:eps

24
g:eps

25
e:eps

28
g:eps

OpenFst Part III. Applications Input Method 24

• Minimal deterministic dictionary transducer (L):

0 1
b:eps

2
a:eps

3
i:eps

4

u:eps
5

d:eps
6

g:bag

d:bid

g:big

g:bug

7
d:eps

eps:bad

8

g:badge

eps:bud

g:budge

e:eps

OpenFst Part III. Applications Input Method 25

• Word grammar (G):

0

1

bad/1

badge/2

bug/1.75

2
bag/3 3

bid/3

bid/2

budge/2.75

big/1.5

bud/2.25

• T9 recognition:

– Construct: M = T ∗ ◦ L∗ ◦G
– Compute for input s: ShortestPath(s ◦M).

OpenFst Part III. Applications Input Method 26

ASR Problem Definition

Given an utterance, find its most likely written transcription.

Fundamental ideas:

• Utterances are built from sequences of units

• Acoustic correlates of a unit are affected by surrounding units

• Units combine into higher level units — phones → syllables → words

• Relationships between levels can be modeled by weighted graphs

• Recognition: find the best path in a suitable product graph

OpenFst Part III. Applications ASR Applications 27

Maximum-Likelihood Decoding

Overall analysis:

• Acoustic observations: parameter vectors derived by local spectral analysis of the speech

waveform at regular (e.g. 10msec) intervals

• Observation sequence o

• Transcriptions w

• Probability P (o|w) of observing o when w is uttered

• Maximum-likelihood decoding:

ŵ = argmax
w

P (w|o) = argmax
w

P (o|w)P (w)
P (o)

= argmax
w

P (o|w)︸ ︷︷ ︸
channel

model

P (w)︸ ︷︷ ︸
language

model

OpenFst Part III. Applications ASR Applications 28

Generative Models of Speech

Typical decomposition of P (o|w) into conditionally-independent mappings between levels:

• Acoustic model P (o|p) : phone sequences→ observation sequences. Detailed model:

– P (o|d) : distributions→ observation vectors — symbolic→ quantitative

– P (d|m) : context-dependent phone models→ distribution sequences

– P (m|p) : phone sequences→ model sequences

• Pronunciation model P (p|w) : word sequences→ phone sequences

• Language model P (w) : word sequences

A C L G

acoustic
observations

context−dependent
phones

phones words word
sequences

OpenFst Part III. Applications ASR Applications 29

Speech Recognition Problems

• Modeling: how to describe accurately the relations between levels ⇒ modeling

errors

• Search: how to find the best interpretation of the observations ac-

cording to the given models ⇒ search errors

This talk will emphasize the latter topic.

OpenFst Part III. Applications ASR Applications 30

Classical ASR Search I – Network Representation

• Grammar: word network

0	 1	
end/0.7

user/0.3
2	

user/0.3

end/0.6

data/0.1
3	/0

experience/1

• Lexicon: mapping from word label to phonetic network

“data”: 0	 1	
d/1

2	
ey/0.4

ae/0.6
3	

dx/0.8

t/0.2
4	/0

ax/1

• Phone model: mapping from phone label to HMM network

“ae”: 0	

ae1

1	
ae1

ae2

2	
ae2

ae3

3	
ae3

OpenFst Part III. Applications ASR Applications 31

Classical ASR Search II – Network Substitution and Viterbi Search

• Above networks are recursively substituted, either offline or dynamically during

recognition, to form a single large network.

• The combined network is time-synchronously (Viterbi) matched to the incoming

speech and searched for the best (lowest total cost) matching path which is re-

turned as the hypothesized word string. For improved speed, partial paths that

score less than the best path so far (outside the so-called beam) can be pruned,

but this potentially creates search errors.

OpenFst Part III. Applications ASR Applications 32

Problems with the Classical ASR Search

The problems with this classical approach for large vocabulary speech recognition

include:

1. Context-Dependent Modeling: Context-dependent models are awkward to rep-

resent by network substitution. (Solution: finite-state transducers and composi-

tion.)

2. Network Redundancy and Size: Networks can be highly redundant and very large.

(Solution: finite-state optimizations – determinization and minimization.)

3. Network Weight Distribution: The distribution of the grammar and pronunci-

ation weights strongly affect pruning efficiency. What is the optimal way to

distribute them? (Solution: weight pushing)

OpenFst Part III. Applications ASR Applications 33

Context-Dependency Examples

• Context-dependent phone models: Maps from context-independent units to context-

dependent ones. Example: ae/b d→ aeb,d

• Context-dependent allophonic rules: Maps from baseforms to detailed phones.

Example: t/V ′ V → dx

• Difficulty: In cross-word contexts – where several words enter and leave a state

in the grammar, substitution does not apply.

OpenFst Part III. Applications ASR Applications 34

Weighted Transducers

Finite automata with input labels, output labels, and weights.

• Transitions:

q
x:y/k→ q′

x ∈ Σ ∪ {ε}, y ∈ Γ ∪ {ε}, weight k

• Example — word pronunciation transducer:

d:ε/1 ey:ε/.4

ae:ε/.6

dx:ε/.8

t:ε/.2

ax:"data"/1

OpenFst Part III. Applications ASR Applications 35

How to Build a Finite-State Language Processor

Operation purpose example

Basic element word pronunciation

Union alternation alternative pronunciations

Concatenation sequencing compound word

Closure indefinite repetition sequence translation

Composition stage combination recognition cascade

Determinization redundancy removal determinized cascade

Minimization size reduction optimized cascade

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 36

Integrated network

H C L G

distributions context−dependent
phones

phones words word
sequences

• H: HMM transducer, closure of the union of all HMMs used in acoustic modeling,

• C: context-dependency transducer mapping context-dependent phones to phones,

• L: pronunciation dictionary transducer mapping phonemic transcriptions to word se-

quences,

• G: language model weighted automaton.

H ◦ C ◦ L ◦G: mapping from sequences of distribution names to word sequences.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 37

Grammar Acceptor

0 1
using:using/1

2data:data/0.66

3

intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1
5/0

better:better/0.7

worse:worse/0.3

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 38

N-Gram Language Models

• Want to estimate the probability of a sentence w1, w2, w3, w4, . . .

• By the chain rule of probability,

Pr(w1, w2, . . .) = Pr(w1)×Pr(w2 |w1)×Pr(w3 |w1, w2)×Pr(w4 |w1, w2, w3)×· · ·

• Bigram approximation, plus conventional handling of first word:

Pr(w1, w2, . . .) ≈ Pr(w1 | $)× Pr(w2 | w1)× Pr(w3 | w2)× Pr(w4 | w3)× · · ·

• Has a straightforward representation as an FST, where states encode conditioning

histories.

• Backoff models can be represented inexactly with epsilon transitions or exactly

with failure transitions.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 39

Bigram Grammar

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 40

Pronunciation Lexicon Transducer

0

1d:data/1

5

d:dew/1

2 ey: ε /0.5

 ae: ε /0.5

6/0
 uw: ε /1

3
 t: ε /0.3

 dx: ε /0.7
4/0

 ax: ε /1

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 41

Context-Dependent Triphone Transducer

#,* x,#

x:x/#_#

x,x

x:x/#_x

x,y

x:x/#_y

y,#

y:y/#_#

y,x

y:y/#_x

y,y

y:y/#_y x:x/x_#

x:x/x_x

x:x/x_y

y:y/x_#

y:y/x_x

y:y/x_y

x:x/y_#
x:x/y_x

x:x/y_y

y:y/y_#

y:y/y_x
y:y/y_y

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 42

Deterministic Context-Dependent Triphone Transducer

ε,ε

ε,x

x:ε

ε,y

y:ε

x,ε
$:x/ε_ε

x,x

x:x/ε_x

x,y
y:x/ε_y

y,ε

$:y/ε_ε

y,x

x:y/ε_y

y,y
y:y/ε_y

$:x/x_ε

x:x/x_x
y:x/x_y

$:y/x_ε

x:y/x_x

y:y/x_y

$:x/y_εx:x/y_x

y:x/y_y

$:y/y_ε

x:y/y_x

y:y/y_y

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 43

Network Construction I: Disambiguation

1. L → L̃, auxiliary symbols used to make L ◦ G determinizable (homophones,

transduction’s unbounded delay):

r eh d #0 read

r eh d #1 red

2. C → C̃, self-loops used for further determinizations at the context-dependent

level,

3. H → H̃, self-loops at initial state, auxiliary context-dependent symbols mapped

to new distinct distribution names.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 44

Network Construction II: Combination/Optimization

1. Composition:

N = πε(H̃ ◦ C̃ ◦ L̃ ◦G)

2. Determinization:

N = πε(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))

3. Minimization:

N = πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G)))))

4. Weight Pushing:

N = push(πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))))

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 45

Network Construction Example I

0 1

jim/1.386

jill/0.693

bill/1.386
2/0

read/0.400

wrote/1.832

fled/1.771

G

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 46

Network Construction Example II

0

14jh:jim

10jh:jill

1b:bill

18

r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19
eh:<eps>

23
iy:<eps>

27
ow:<eps>

6
l:<eps>

3
l:<eps>

4

#0:<eps>

<eps>:<eps>

7
eh:<eps>

8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13

#0:<eps>

<eps>:<eps>

16
m:<eps>

17

#0:<eps>

<eps>:<eps>

20
d:<eps>

21

#0:<eps>

<eps>:<eps>

24
d:<eps>

25

#0:<eps>

<eps>:<eps>

28
t:<eps>

29#0:<eps>

<eps>:<eps>

30
<eps>:<eps>

L̃

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 47

Network Construction Example III

0

2jh:jim/1.386

19
jh:jill/0.693

22

b:bill/1.386

3
ih:<eps>/0

20
ih:<eps>/0

23
ih:<eps>/0

1/0

4
m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12

r:wrote/1.832

15

f:fled/1.771

7
eh:<eps>/0

10iy:<eps>/0

13
ow:<eps>/0

16
l:<eps>/0

8
d:<eps>/0

#0:<eps>/0

11
d:<eps>/0

#0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17
eh:<eps>/0

18
d:<eps>/0

#0:<eps>/0
21

l:<eps>/0 #0:<eps>/0

24
l:<eps>/0

#0:<eps>/0

L̃ ◦G

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 48

Network Construction Example IV

0
2b:bill/1.386

3
jh:<eps>/0.693

4
ih:<eps>/0

5
ih:<eps>/0 1/0

6
l:<eps>/0

7
l:jill/0

8

m:jim/0.693
9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12
l:<eps>/0

13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17
d:<eps>/0

18
d:<eps>/0

19
t:<eps>/0

20
d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

det(L̃ ◦G)

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 49

Network Construction Example V

0

2b:bill/0.693

3
jh:<eps>/0

4
ih:<eps>/0

13
ih:<eps>/0 1/05

l:<eps>/0

l:jill/0

m:jim/0.693
6

#0:<eps>/0

7f:fled/1.371

8
r:<eps>/0

9
l:<eps>/0

10
iy:read/0

eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11

d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

min(det(L̃ ◦G))

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 50

Network Construction Example VI

0

2b:bill/1.386

3
jh:<eps>/0.287

4
ih:<eps>/0

11
ih:<eps>/0 1/05

l:<eps>/0

l:jill/0.405

m:jim/1.098

6f:fled/2.284

7
r:<eps>/0.107

8
l:<eps>/0

9
eh:read/0.805

iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

push(πε(min(det(L̃ ◦G))))

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 51

Network Construction – Alternatives

• C ◦ det(L ◦G)

Grammar G compiled into optimized network offline, cannot exchange it at run-

time.

• det(C ◦ L) ◦G
Outermost composition badly behaved.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 52

ASR Recognition Transducer Standardization

• Minimal deterministic weighted transducers: unique up to state renumbering

and to any weight and output label redistribution that preserves the total path

weights and output strings.

• Weight-pushed transducer: selects a specific weight distribution along paths while

preserving total path weights.

• Result is a standardized recognition transducer.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 53

Network Construction III: Factoring

1. Idea

a) Decoder feature: separate representation for variable-length left-to-right HMMs (time

and space efficiency),

b) To take advantage of this feature, factor integrated network N :

N = H′ ◦ F

2. Algorithm

a) Replace input of each linear path in N by a single label naming an n-state HMM,

b) Define gain G(σ) of the replacement of linear path σ,

G(σ) =
∑

π∈Lin(N),i[π]=σ

|σ| − |o[π]| − 1

c) Replacement exactly in the cases where it helps reducing the size of the network.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 54

1st-Pass Recognition Networks – 40K NAB Task

network states transitions

G 1,339,664 3,926,010

L ◦G 8,606,729 11,406,721

det(L ◦G) 7,082,404 9,836,629

C ◦ det(L ◦G)) 7,273,035 10,201,269

det(H ◦ C ◦ L ◦G) 18,317,359 21,237,992

F 3,188,274 6,108,907

min(F) 2,616,948 5,497,952

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 55

1st-Pass Recognition Speed - 40K NAB Eval ’95

network x real-time

C ◦ L ◦G 12.5

C ◦ det(L ◦G) 1.2

det(H ◦ C ◦ L ◦G) 1.0

push(min(F)) 0.7

Recognition speed of the first-pass networks in the NAB 40, 000-word vocabulary task at 83%

word accuracy.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 56

2nd-Pass Recognition Speed - 160K NAB Eval ’95

network x real-time

C ◦ L ◦G .18

C ◦ det(L ◦G) .13

C ◦ push(min(det(L ◦G))) .02

Recognition speed of the second-pass networks in the NAB 160, 000-word vocabulary task at

88%.

OpenFst Part III. Applications Integrated Context-Dependent Networks in VLVR 57

