OpenFst: a General and Efficient Weighted Finite-State Transducer Library

Introduction

Cyril Allauzen - allauzen@google.com Michael Riley - riley@google.com

December 12, 2010

Special thanks to Johan Schalkwyk, Mehryar Mohri, and Wojtek Skut.

OpenFst Library

- C++ template library for constructing, combining, optimizing, and searching weighted finite-states transducers (FSTs).
- Goals: Comprehensive, flexible, efficient and scale well to large problems.
- Origins: AT&T, merged efforts from Google and the NYU Courant Institute.
- Documentation and Download: http://www.openfst.org
- Released under the Apache license.

Weighted Automata

- Finite automata with labels and weights.
- Example: Pronunciation model automaton:

Weighted Transducers

- Finite automata with input labels, output labels, and weights.
- Example: Pronunciation lexicon transducer:

Motivation

- Finite-State Automata: Compact representations of *regular (rational)* sets that are efficient to search. Examples: pattern matching (grep, PCRE), tokenization, compression.
- Finite-State Transducers: Compact representations of *rational* binary relations that are efficient to search and combine/cascade. Examples: dictionaries, context-dependent rules
- Weighted Automata: Weights typically encode uncertainty as e.g. probabilities. Examples: n-gram language models, language translation models.

References

• General Background:

- John E. Hopcroft and Jeffrey D. Ullman.
 Introduction to Automata Theory, Languages, and Computation.
 Addison Wesley, 1979.
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction to Algorithms. The MIT Press, 1992.
- Theory of Transductions and Rational Power Series:
 - Jean Berstel.
 Transductions and Context-Free Languages.
 Teubner, 1979.
 - Jean Berstel and Christophe Reutenauer.
 Rational Series and Their Languages.
 Springer, 1988.
- Weighted Transducer Algorithms
 - Mehryar Mohri.
 Weighted automata algorithms.
 In Handbook of Weighted Automata. Springer, 2009.

Introduction

- Transducers Applied to Speech and NLP:
 - Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley.
 Speech recognition with weighted finite-state transducers.
 In Springer Handbook of Speech Processing. Springer, 2008.
 - Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley.
 The design principles of a weighted finite-state transducer library. *Theoretical Computer Science*, 231, 2000.
 - Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri.
 OpenFst: A General and Efficient Weighted Finite-State Transducer Library. In *Proc. CIAA 2007.* Springer, 2007.
 - Cyril Allauzen, Michael Riley, and Johan Schalkwyk.
 Filters for Efficient Composition of Weighted Finite-State Transducers.
 In Proc. CIAA 2010. Springer, 2010.

Current OpenFst Applications

- Speech recognition (speech-to-text): lexicons, language models, phonetic context-dependency, recognizer hypothesis sets.
- Speech synthesis (text-to-speech): tokenization, text normalization, pronunciation models
- Optical character recognition: lexicons, language models
- Machine Translation: translation models, language model, translation hypothesis sets.
- Information extraction: pattern matching, text processing

Overview

- 1. Part I: Library Use and Design
- 2. Part II: Applications